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Abstract
Weber’s law predicts that stimulus sensitivity will increase proportionally with increases in stimulus intensity. Does this hold for
the stimulus of time – specifically, duration in the milliseconds to seconds range? There is conflicting evidence on the relationship
between temporal sensitivity and duration. Weber’s law predicts a linear relationship between sensitivity and duration on interval
timing tasks, while two alternative models predict a reverse J-shaped and a U-shaped relationship. Based on previous research,
we hypothesised that temporal sensitivity in humans would follow a U-shaped function, increasing and then decreasing with
increases in duration, and that this model would provide a better statistical fit to the data than the reverse-J or the simple Weber’s
Law model. In a two-alternative forced-choice interval comparison task, 24 participants made duration judgements about six
groups of auditory intervals between 100 and 3,200 ms. Weber fractions were generated for each group of intervals and plotted
against time to generate a function describing sensitivity to the stimulus of duration. Although the sensitivity function was
slightly concave, and the model describing a U-shaped function gave the best fit to the data, the increase in the model fit was
not sufficient to warrant the extra free parameter in the chosen model. Further analysis demonstrated that Weber’s law itself
provided a better description of sensitivity to changes in duration than either of the two models tested.
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Introduction

The accurate measurement of time is a biological necessity for
all organisms, allowing them to align their internal biological
cycles with the external cycles on which they depend for sur-
vival. Animals use a variety of biological mechanisms to mea-
sure time on scales ranging from microseconds to years
(Buonomano, 2007). Out of the many ways that biology has
found tomeasure time, the one that is of most direct relevance to
behaviour and cognition is that which spans the duration from

milliseconds to minutes (Matell & Meck, 2000). This area of
timing, often referred to as interval timing, is characterised by
both a relatively low level of accuracy and a high level of flex-
ibility in measuring intervals on demand (Gibbon et al., 1997).

Given the importance of interval timing, it is surprising to
find that its neurobiological mechanisms are still poorly un-
derstood (Matell & Meck, 2000). This uncertainty has led to a
debate between several rival models describing different
mechanisms for timing, each of which predicts a different
mathematical relationship between durations of physical time
and measures of perceived time (Grondin, 2001).

In time-perception research, estimations of duration are
treated as measurements of the perceived intensity of the stim-
ulus of time in a way that is analogous to the intensity of any
other physical stimulus (Grondin, 2001). As with all types of
perception, organisms are unable to perceive variations in du-
ration if those changes fall below a certain threshold, known
as the just noticeable difference (JND). Analysis of the way
that these perceptual thresholds change as duration changes
can yield useful information about the nature of the processes
that an organism uses to measure time (Grondin, 2001). This
analysis is informed by models that attempt to predict the
relationship between stimulus threshold and stimulus intensity
(Grondin, 2010a).
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The relationship between threshold and intensity is de-
scribed by Weber’s law (Sowden, 2012). In its strict form,
Weber’s law predicts that the ratio of JND to stimulus inten-
sity (I) will be constant:

JND
I

¼ k; ð1Þ

where the term JND/I is known as theWeber fraction (Wf) and
k is known as the Weber constant (Holway & Pratt, 1936).
Weber’s law holds for a wide variety of stimuli across a broad
range of intensities (Sowden, 2012); however, it is also vio-
lated in many instances (Masin, 2009). For example, many
types of stimuli exhibit disproportionately low sensitivity to
changes in stimulus intensity at very low stimulus intensity
(Sowden, 2012). Although Weber’s law is not universal, the
Wf is still widely used as a measure of stimulus sensitivity in
models that seek to describe the mechanisms behind experi-
mentally observed variations in perceptual thresholds (Gibbon
et al., 1997).

Stimulus thresholds can be derived by asking subjects to
discriminate between two stimuli and then plotting the per-
centage of correct discriminations against stimulus intensity to
generate a psychometric function (Kingdom & Prins, 2016).
By defining the JND in terms of the slope of the psychometric
function, the variability of the perceptual discriminations be-
comes a measure of sensitivity to changes in stimulus intensity
(Grondin, 2010b). Definition of the JND thus allows theWf to
be stated as a coefficient of variation in terms of the ratio
between the standard deviation (SD) of perceptual discrimina-
tions and the mean (M) of those discriminations:

Wf ¼ SD
M

ð2Þ

The way that sensitivity to changes in stimulus intensity
varies across a specific range can be visualised by plotting
the Wf against stimulus intensity. The resulting function, the
perceptual sensitivity function (PSF), can exhibit a variety of
shapes depending on the way that the Wf varies with changes
in stimulus intensity (Lejeune & Wearden, 2006). Weber’s
law predicts that Wfs will be constant across all intensity
values, and therefore in situations where Weber’s law is sup-
ported, the PSF will be flat. In contrast, where stimulus sen-
sitivity is very low at low stimulus intensity but constant at
higher intensities, the PSF will have a reverse J shape, with
Wfs starting high and falling to a horizontal asymptote.

The applicability ofWeber’s law to the relationship between
duration and the perception of duration has been the subject of
ongoing debate in the literature (e.g., Bizo et al., 2006; Getty,
1975; Grondin, 2014; Haß et al., 2008; Killeen&Weiss, 1987).
Scalar expectancy theory predicts that measurements of stimu-
lus thresholds for time perception will exhibit constantWfs and
therefore flat PSFs (Gibbon & Church, 1984), a relationship

that has come to be known as the scalar property of time
perception (Grondin, 2014). This relationship can be stated
mathematically by replacing M with the mean duration of the
temporal discriminations (t̄) in Eq. 2 (Gibbon, 1977).

Wf ¼ SD

t
¼ k ð3Þ

There is good evidence, however, that time perception is
not entirely scalar, but violates Weber’s law at very short
intervals, with Wfs that fall from a high value to a horizontal
asymptote at a point somewhere between 50 and 2,000 ms
(Church et al., 1976; Corke et al., 2018; Fetterman &
Killeen, 1992; Getty, 1975). Getty (1975) proposed a gener-
alised form of Weber’s law that models this characteristic
reverse J-shaped PSF according to the equation:

Wf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

At
2
þ C

q

t
; ð4Þ

where the parameter C represents a component of residual
noise variance, A is a parameter related to the value of the
Weber constant, and Wf and t̄ are as defined above (for a
derivation of this equation, see the Online Supplementary
Materials (OSM)).

Another prominent model developed to describe the rela-
tionship between stimulus sensitivity and stimulus intensity in
time perception is that of Killeen and Weiss (1987). This
model represents the variability in subjects’ ability to measure
time in terms of the advantage that they gain from segmenting
intervals into subintervals in a way that minimises variance.
The result is a quadratic relation in which the PSF is given by:

Wf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

At
2
þ Bt þ C

q

t
; ð5Þ

where A, B, andC are free parameters (Killeen&Weiss, 1987;
see Online Supplementary Materials for derivation). The
strength of this model is that it accommodates many previous-
ly developed models as special cases. For example, Eq. 5
becomes Weber’s law (Eq. 3) with B = C = 0, and it becomes
Getty’s model (Eq. 4) with B = 0 (Killeen & Weiss, 1987).

The model proposed by Killeen and Weiss (1987) can be
used to describe both the flat PSFs and the reverse J-shaped
PSFs found in the experimental literature. This model assumes
that the scalar property of time perception is only violated at
shorter intervals and holds at longer intervals. The majority of
studies in both the human- and animal-timing literature sup-
port this assumption (Lejeune & Wearden, 2006; Wearden &
Lejeune, 2008). There is, however, some evidence to suggest
that it may not be universally correct, with several studies
showing rising Wfs at longer intervals (Grondin, 2010b,
2012; Lavoie & Grondin, 2004; Lejeune & Wearden, 1991).
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Conjoined with earlier findings of fallingWfs at shorter inter-
vals, this evidence suggests that the overall shape of the PSF
may, at least in some circumstances, be U-shaped rather than
reverse J-shaped, falling at shorter intervals only to rise again
at longer intervals.

Perhaps the most well-known example of U-shaped PSFs
comes from Getty (1975). A two-alternative forced-choice in-
terval comparison paradigm was used to measure temporal
perception thresholds in two human subjects at a range of du-
rations from 50 to 3,200 ms. Wfs were highest at 50 ms and
levelled out at around 200ms; however, careful examination of
Getty’s data reveals that Wfs began to rise again somewhere
around 2,500ms (Fig. 1). A similar result in a different range of
intervals had been reported many years earlier by Woodrow
(1930), who measured perceptual thresholds from 0.2 to 30 s
using a temporal reproduction task in eight male subjects.

Woodrow found Wfs that decreased slightly from 0.2 to 0.6 s,
remained constant to 1.5 s, and then increased beyond 1.5 s.

U-shaped PSFs are not limited to the human timing litera-
ture. Cantor and Wilson (1981) found a U-shaped PSF with
low points from 0.5 to 2 s in rats performing a temporal re-
production task across a range of intervals from 0.2 to 6 s.
More recently, U-shaped PSFs were found in pigeons using
both temporal production and interval comparison paradigms
across durations from 0.5 to 64 s (Bizo et al., 2006), and in
domestic dogs using a temporal bisection paradigm across
intervals from 0.5 to 16 s (Cliff et al., 2019).

This small body of experimental evidence for the existence
of U-shaped PSFs is problematic. Even the most generalised
model of time perception (Killeen & Weiss, 1987) does not
accommodate data with Wfs that increase at longer intervals.
In an attempt to fill this gap, Bizo et al. (2006) modified the

Fig. 1 Perceptual sensitivity functions (PSF) plotting Weber fractions
(SD/T) against interval duration (T) for the two subjects in Getty’s
(1975) study fitted to a counter model (dashed line) and Getty’s model
(Eq. 4; solid line). Datapoints are for SIs of (from left to right) 50, 100,
200, 400, 600, 800, 1,000, 1,200, 1,400, 1,600, 1,800, 2,000, 2,400,

2,800, and 3,200 ms. Reprinted from “Discrimination of short temporal
intervals: A comparison of two models,” by D. J. Getty, 1975, Perception
& Psychophysics, 18, p.5. Copyright 1975 by The Psychonomic Society.
Reprinted with permission
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Killeen andWeiss (1987) model to describe the U-shaped PSF
generated in their study, yielding a Wf given by:

Wf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

At
m
þ Bt þ C

q

t
; ð6Þ

where m is an additional free parameter that allows the expo-
nent in Eq. 5 to vary its value to fit the data.

Information about the shape of the PSF is important in
timing research because it informs the development of models
that seek to describe the neurological and cognitive processes
that give rise to the perception of time (Grondin, 2010a). Many
of these models rely on the assumption that Wfs remain con-
stant at longer intervals (Matell & Meck, 2000). However, the
research cited above has established that time perception is not
always scalar at longer intervals (Grondin, 2010b, 2012;
Lavoie & Grondin, 2004; Lejeune & Wearden, 1991). These
deviations from the scalar property are mademanifest by the U-
shaped PSFs that are generated by both humans and animals
under some conditions (Bizo et al., 2006; Cantor & Wilson,
1981; Cliff et al., 2019; Getty, 1975; Woodrow, 1930).

Getty’s (1975) data, showing that human PSFs rise after about
2,500 ms (Fig. 1), has been cited as evidence of the violation of
the scalar property of time perception at longer intervals (e.g.,
Bizo et al., 2006; Grondin, 2001, 2010b; Haß et al., 2008; Lavoie
& Grondin, 2004). The results of human studies by Woodrow
(1930), Grondin (2010b, 2012), and Lavoie and Grondin (2004)
suggest that this rise might begin as early as 1,200 ms. Other
studies have failed to find rising PSFs in human subjects
(Wearden & Lejeune, 2008). Is this rise a reliable effect? And
if so, at what point in the overall range of millisecond to minutes
scale timing does it occur?

We aimed to explore the anomaly in Getty’s (1975) data to
determine whether variations in temporal sensitivity in humans
are best described by a reverse J-shaped or U-shaped PSF. We
used a methodology similar to that utilised by Getty to generate
Wfs across a range of intervals from 100 to 3,200 ms. The
resulting data were then fit to the generalised model of
Killeen and Weiss (1987; Eq. 5) and the variant of that model
developed by Bizo et al. (2006; Eq. 6). We hypothesised that
the PSF generated from this dataset would be U-shaped. We
also hypothesised that the best fit for this function would be
given by the model developed by Bizo et al., which is the only
extant model capable of describing U-shaped PSFs.

Method

Participants

The sample consisted of 24 participants, 14 of whom were
female (58%). Participants ranged in age from 24 to 73 years

(M = 38.13, SD = 10.18), had adequate hearing for the exper-
imental task, and were able to understand written instructions
in English.

Participants were recruited via an invitation circulated
through the online social media platform Facebook and gave
consent via an electronic form presented at the beginning of
the experiment. The Human Research Ethics Committee of
the University of New England approved this study (HE19-
075).

Apparatus and materials

The experiment was carried out using a custom-made script
running on version 5.0 of the Inquisit software platform
(Millisecond, 2018). The scrip is available in the OSM. The
stimuli were defined by the start and stop points of a series of
pure 440-Hz tones of different durations. These tones were
generated using version 8.5 of the professional digital audio
workstation Cubase (Steinberg, 2015) and recorded as WAV
files (available in the Online Supplementary Material).

The stimuli consisted of two types of intervals, standard
intervals (SIs) and test intervals (TIs), which were identical
in all aspects apart from their duration. The six experimental
conditions (S1–S6) were defined by the six SIs, which were
distributed in logarithmic increments from 100 to 3,200 ms.
For each SI there were five TIs, consisting of a central TI equal
to the duration of the SI itself and two TIs either side of the SI
spaced at durations proportional to the magnitude of the SI
(Table 1).

The experiment was run on a Lenovo Yoga 520 laptop, and
the audio stimuli were delivered binaurally using standard
Audio-Technica ATH-M20x headphones at an A-weighted
sound level of 55 dB. Responses were indicated using the left
and right arrow keys on the computer keyboard.

Procedure

Participants were tested individually in single sessions lasting
between 60 and 90 min. The experiment was conducted in a

Table 1 Duration in milliseconds of the five test intervals (TIs) for each
of the six standard intervals (SIs) used in the experiment

Condition Short TIs Central
TI = SI

Long TIs Interval increments

S1 84 92 100 108 116 8

S2 168 184 200 216 232 16

S3 336 368 400 432 464 32

S4 672 736 800 864 928 64

S5 1,344 1,472 1,600 1,728 1,856 128

S6 2,688 2,944 3,200 3,456 3,712 256
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small enclosed office with participants seated facing away
from the windows to minimise the risk of distraction. The
A-weighted ambient sound level in the room was 32.6 dB,
and the light intensity was 411 lx.

The experiment utilised a two-alternative forced-choice in-
terval comparison task similar to that used by Getty (1975). In
each trial, a single pair of stimuli consisting of an SI and a TI
were presented. Participants were required to decide which of
the two intervals was longer. The experiment consisted of six
blocks of 100 trials each (Fig. 2, Panel A). Each experimental
block tested one of the six SIs— each corresponding to one of
the six experimental conditions. The order of the blocks was
permuted using a balanced Latin square to minimise the risk
of order effects between the six conditions. Each block
consisted of 20 randomly distributed comparisons between
each of the five TIs and the SI of that condition (Fig. 2,
Panel B). The order of presentation of the SI and TI was
randomly varied to avoid interval order effects (Jamieson &
Petrusic, 1975). Interstimulus intervals were varied randomly
from 750 to 850 ms, and the post-stimulus interval was varied
randomly from 350 to 450 ms so that there were no regular
intervals in the experiment apart from the experimental
stimuli.

Each experimental session was initiated with two short
training blocks of 20 trials each. In the first training
block, which was designed to test participants’ under-
standing of the instructions, the intervals were easily dis-
tinguishable, and feedback was given after each response.
In the second training block, the intervals were identical
to those of the third (S3) condition, and there was no
feedback following each response by a participant.
During these two training blocks, the experimenter
watched from outside the room to be available to answer
any questions. Participants were then left to complete the
remainder of the experiment. All participants performed
satisfactorily on the first block of practice trials and were
able to complete the experiment without assistance.

Participants were instructed at the beginning of each block not
to tap, count, or use any other periodic movements to measure
the intervals. This was done to reduce the likelihood that partic-
ipants would use counting as a mediating strategy. The level of
participants’ confidence in their ability to comply with this in-
struction was assessed at the end of each block using a five-point
Likert scale between “very uncertain” and “very certain”.

At the end of each block, participants were able to take a
break for whatever duration they desired, and refreshments
were available in the experiment room throughout the exper-
iment. Participants were debriefed and allowed to ask addi-
tional questions about the experiment at the end of the
experiment.

Data analysis

Initial data analysis was conducted using Microsoft Excel
(Microsoft Office 365 Pro Plus, Version 16.0) and its Solver
addons. Three metrics for response accuracy, practice effects,
and response bias were calculated to assess the validity of the
data. Response accuracy was assessed by recording a value of 1
for correct responses and 0 for incorrect responses in each trial.
Because the third TI was identical to the SI and therefore nei-
ther response could be correct or incorrect, responses to this TI
were assigned a value of 0.5 in this accuracy metric regardless
of the judgement made. This ensured that random responding
would result in 50% accuracy in this metric. (Note that these
data were not used for calculating theWf.) Practice effects were
assessed by creating a separate practice metric and assigning a
value of 1 to each correct judgement, excluding the third TI.
These values were totalled over the entire experiment to gen-
erate a cumulative number correct, which was plotted against
the trial number and assessed for linearity using least-squares
linear regression. Response biases were assessed using the re-
sponse values recorded in the raw data to generate a value for
the percentage of right-arrow responses in each block.

Fig. 2 Schematic depiction of the structure of the overall experiment (Panel A) and a single trial (Panel B)
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The raw data used to generate the Wfs consisted of 20
binary discriminations (SI longer or TI longer) for each of
the 30 TIs. Discriminations were given a value of 0 if the
participant judged the SI to be the longer of each pair of
intervals and a value of 1 if the participant judged the TI to
be longer. These values were summed across the 20 trials of

each of the five TIs in each block. They were then converted
into a percentage, yielding a value for the percentage of long
responses for each TI. These percentage long values were
plotted against TI duration within each block to give six psy-
chometric functions for each participant. The standard devia-
tion for each of these psychometric functions was calculated
directly from a frequency distribution consisting of the time
intervals for which “longer” judgements were made in each
block, and theWf for each condition was calculated by divid-
ing the standard deviation by the mean discrimination dura-
tion (t)̄.

The independent variable for our primary analysis was the
duration of the SIs in the six conditions, while the dependent
variable was theWf generated in each condition. To assess the
degree of difference between these six Wfs, a repeated-
measures analysis of variance was conducted using the

Fig. 3 Mean psychometric functions (black dots) plotting the mean percentage of trials in which the test interval (TI) was judged longer than the standard
interval against TI duration for conditions S1–S6, with 95% confidence intervals (CIs; dashed lines)

Table 2 Mean Weber fractions for each condition with standard
deviations

Condition

S1 S2 S3 S4 S5 S6

M 0.10 0.10 0.09 0.09 0.09 0.10

SD 0.01 0.01 0.01 0.01 0.01 0.01
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SPSS software package (IBM SPSS Statistics, Version 23).
PSFs for each participant were generated by plotting the Wf
against t ̄ for each condition. An overall mean PSF was gener-
ated by plotting the mean of all participant’sWfs against over-
all mean t ̄ for each condition (see Fig. 4).

A coefficient of determination (r2) describing the degree of
fit between these PSFs and the Killeen and Weiss (1987; Eq.
5) and Bizo et al. (2006; Eq. 6) models was calculated accord-
ing to the non-linear regression procedure outlined by Brown
(2001) using the Solver plug-in in Microsoft Excel (Microsoft
Office 365 Pro Plus, Version 16.0). The difference in the
number of free parameters in the two models made interpre-
tation of coefficients of determination problematic (Eqs. 5 and
6 with three and four free parameters, respectively; Spiess &
Neumeyer, 2010). Consequently, the final analysis was con-
ducted using corrected Akaike information criterion (AICc)
values (Burnham & Anderson, 2004; for mathematical
details, see the OSM).

Results

Mean discrimination durations (t)̄ were consistently close to
the SI duration (OSM, Fig. S1), and all mean psychometric
functions had a positive slope (Fig. 3). The six psychometric
functions for each of the 24 participants (see OSM, Fig. S2)
also had a positive slope, apart from two cases with zero
slopes and one with a slightly negative slope (participant 1,

S1 condition; Fig. S2). Replacing the latter Wf with a value
corresponding to a zero slope did not affect the outcome, so all
psychometric functions were included in the data analysis.

Wfs ranged from 0.05 to 0.12 (OSM, Table S2), and mean
Wfs were between 0.09 and 0.10 (M = 0.09, SD = 0.01;
Table 2). The overall mean PSF was slightly concave (Fig.
4, black dots). A one-way repeated-measures analysis of var-
iance showed that there was a significant difference in theWfs
between the six conditions, F(5, 115) = 4.69, p = .001, with a
large effect size (partial η2 = .17). Pairwise comparisons using
the Bonferroni correction revealed that theWfs for the shortest
condition (S1) were significantly higher than those of the
third, fourth, and fifth conditions (p < .05; Table 3).
Although the meanWf for the longest (S6) condition was also
higher than that of the third, fourth, and fifth conditions
(Table 2), the difference was not statistically significant, and
no other comparisons were statistically significant (Table 3).

The Bizo et al. (2006) model (Eq. 6) had a higher coeffi-
cient of determination when fit to the overall PSF (r2 = 0.80)
than the Killeen and Weiss (1987) model (Eq. 5; r2 = 0.60).
The Bizo et al. model also had a higher mean coefficient of
determination when fit to the individual PSFs (mean r2 = 0.46,
SD = 0.28) than the Killeen andWeiss model (mean r2 = 0.26,
SD = 0.30; Table 4; for individual PSFs with 95% confidence
intervals see OSM, Fig. S2). The Bizo et al. model gave a
better fit to the data than the Killeen and Weiss model when
no adjustments are made for the difference in the number of
free parameters between the two models. There was a high

Table 3 Results for the one-way analysis of variance comparing the Weber fractions between the six conditions

Condition (I) Condition
(J)

Mean ifference (I-J) Std. Error Sig.b 95% confidence interval for differenceb

Lower bound Upper bound

S1 S2 0.004 0.003 1 -0.005 0.012

S3 .010a 0.003 0.024 0.001 0.02

S4 .010 a 0.003 0.022 0.001 0.018

S5 .010 a 0.002 0.008 0.002 0.018

S6 0.003 0.003 1 -0.006 0.012

S2 S3 0.007 0.003 0.261 -0.002 0.015

S4 0.006 0.003 0.677 -0.003 0.015

S5 0.006 0.003 1 -0.005 0.017

S6 -0.001 0.003 1 -0.01 0.009

S3 S4 -0.001 0.003 1 -0.011 0.01

S5 0 0.004 1 -0.013 0.012

S6 -0.007 0.003 0.19 -0.017 0.002

S4 S5 0 0.003 1 -0.01 0.011

S6 -0.007 0.002 0.097 -0.014 0.001

S5 S6 -0.007 0.003 0.391 -0.017 0.003

Based on estimated marginal means.
a The mean difference is significant at the .05 level
b Adjustment for multiple comparisons: Bonferroni
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degree of variation in the coefficient of determination values,
ranging from 0 to 0.95 for the Bizo et al. model and -0.34 to
0.95 for the Killeen and Weiss model (Fig. 5).

AICc values for the fit to the overall PSF were higher for
the Bizo et al. model than for the Killeen and Weiss model
(Table 4, upper portion), with an AICc difference value be-
tween the two models of 28.21. The mean AICc values for the
fit to the individual PSFs were also higher for the Bizo et al.
model than for the Killeen and Weiss model (Table 4, lower
portion), with an AICc difference value between the two
models of 29.09. This demonstrates that the Killeen and
Weiss model gave the best fit to the data when adjusted for
the difference in the number of free parameters between the
two models (Burnham & Anderson, 2004).

The mean percentage correct for each condition was consis-
tently above 60% (M = 69%, SD = 5.46; Fig. 6). A one-sample
t-test comparing the percentage correct with the 50% value
expected with random responding found that mean percent
correct differed significantly from chance in all six conditions
(p < .001). Plots of the cumulative number of trials with correct
responses across the experiment for each participant (see OSM,

Fig. S3) showed an almost perfectly linear accuracy pattern for
all participants (mean r2 = 1.00), indicating that there were no
learning effects in this experiment.

The results of the assessment of response bias were mixed.
The overall percentage of right-arrow responses was 50% (SD =
6.04), which is the value expected from a bias-free response
pattern; however, right-arrow responses were at their lowest
number in the shortest interval condition, M = 39.83, SD =
12.69, and climbed steadily to their highest number in the lon-
gest interval condition,M = 63.04, SD = 10.02 (Fig. 7). A one-
sample t-test comparing the percentage of right-arrow responses
with a bias-free performance of 50% showed that the bias was
significant in both the S1 condition, t(23) = - 3.93, p = .001, d =
0.80 and the S6 condition, t(23) = 6.37, p < .001, d = 1.30.

Participants tended to report a high level of confidence that
they were not counting or using any other rhythmic strategies
in this experiment (M = 4.0, SD = 1.18). Mean confidence
levels were highest in the S1 condition (M = 4.54, SD =
0.98), and declined to their lowest level in the S6 condition
(M = 3.58, SD = 1.44; Fig. 8). A Pearson’s correlation be-
tween participants’ coefficients of determination in the fit to

Fig. 4 Mean perceptual sensitivity function plotting the mean Weber
fractions (Wf) against the overall mean of the mean discrimination
durations for each condition (black dots) fit to the functions of the Bizo
et al. (2006) model (Eq. 6; Panel A), the Killeen andWeiss (1987) model

(Eq. 5; Panel B), the Getty (1975) model (Eq. 4; Panel C), and the
Weber’s law model (Eq. 3; Panel D) with 95% confidence intervals
(CIs; dashed lines)
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the Bizo et al. (2006) model and their responses to the confi-
dence question for the longest (S6) interval condition revealed
a weak correlation that was not statistically significant, r(24) =
.18, p = .396.

Discussion

Overall, participants in this study were more likely to judge
the TI as being longer than the SI as TI duration increased
(OSM, Fig. S1), which demonstrates that the stimuli were
within the intended range of participants’ sensitivity to dura-
tion. Participants also exhibited high accuracy in their tempo-
ral discriminations, with consistently low Wfs (see OSM,
Table S2) falling within a range similar to that found in
Getty’s (1975) original study (Fig. 1).

The hypothesis that the PSFwould be U-shaped was only
weakly supported. Visually, the mean PSF had a slightly
concave shape (Fig. 4), and mean Wfs were marginally
higher in the two shortest (S1 and S2) and the longest (S6)
conditions (Table 2); however, the slight upturn in the lon-
gest interval, which is the crucial element in demonstrating
a U-shaped PSF, was not statistically significant (Table 3).
Furthermore, the PSFs of individual participants did not

Fig. 5 Coefficients of determination for each participant for the Killeen and Weiss (1987; black bars) and Bizo et al. (2006; grey bars) models

Table 4 Results for the comparison between the Bizo et al. (2006; Eq.
6) model and the Killeen and Weiss (1987; Eq. 5), Getty (1975; Eq. 4),
andWeber’s law (Eq. 3) models for the overall model fit and the mean of
individual model fits. Note that r2 is not a good indicator of model fit for
Weber’s law because the model is directly proportional to the mean,
however, this does not affect the Akaike information criterion (AICc)
value

Bizo et al. Killeen and Weiss Getty Weber’s law

Overall fit

r2 0.80 0.60 0.60 0

AICc 15.01 -13.20 -23.20 -25.83

AICc Difference 40.84 12.63 2.63 0

Free Parameters 4 3 2 1

Mean of individual fits

r2 M 0.46 0.26 0.23 0

r2 SD 0.28 0.30 0.30 0

r2 Max 0.95 0.95 0.94 0

r2 Min 0.00 -0.34 -0.34 0

AICc M 20.89 -8.20 -17.97 -21.89

AICc difference 42.78 13.69 3.92 0

AICc SD 2.75 2.73 2.62 1.41

AICc Max 25.06 -4.70 -14.22 -18.77

AICc Min 14.23 -15.24 -25.16 -25.49
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show any consistent pattern (see OSM, Fig. S2), whereas
the PSFs of both subjects in Getty’s (1975) study are U-
shaped (Fig. 1). Visual inspection of Fig. 1 demonstrates
that the drop in Wfs at short intervals found in this study is
smaller than that found by Getty; however, part of this early
drop in Wfs reported by Getty occurs between the 50- and

100-ms intervals, whereas the 50-ms interval was not in-
cluded in this study. Ignoring the first data point in both
panels of Fig. 1, the main difference between these two
functions and the mean PSF found in this study (Fig. 4) is
the markedly lower magnitude of the rise in Wfs at longer
intervals in the latter compared with the former.

Fig. 7 Mean percentage of right-arrow responses for each condition.
Individual scores are represented by black circles, slightly jittered for
clarity; shaded areas represent 95% Highest Density Intervals (HDIs),

calculated using R's BEST (Bayesian Estimation Supersedes the T-
Test) package, and vertical bars represent the 10th and 90th quantiles

Fig. 6 Overall mean percentage of correct responses for each condition.
Individual scores are represented by black circles, slightly jittered for
clarity; shaded areas represent 95% Highest Density Intervals (HDIs),

calculated using R's BEST (Bayesian Estimation Supersedes the T-
Test) package, and vertical bars represent the 10th and 90th quantiles
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The hypothesis that the Bizo et al. (2006) model (Eq. 6)
would give the best fit to the data was also only weakly sup-
ported. When using the coefficient of determination as the
metric of comparison, the Bizo et al. model gave a better fit
to both the mean PSF and the individual PSFs. This result,
however, did not hold for the comparison of the AICc values,
which adjust for the different number of free parameters in the
two models (Burnham & Anderson, 2004). The magnitude of
the AICc differences between these two models for both the
mean PSF and the individual PSFs are high enough to con-
clude that the hypothesis that the Bizo et al. model would give
a better fit to the data has no empirical support (Burnham
et al., 2011). Therefore, although allowing the exponent of
the first term in the Killeen and Weiss (1987) model (Eq. 5)
to vary (parameterm in Eq. 6) did yield a higher coefficient of
determination for the Bizo et al. model, the increase in the
accuracy of the model fit to this dataset was not sufficient to
justify the addition of an extra free parameter into the model.

Given that both Getty’s (1975) model (Eq. 4) and Weber’s
law (Eq. 3) have fewer free parameters than either the Bizo
et al. (2006; Eq. 6) or the Killeen and Weiss (1987; Eq. 5)
models, it is useful to explore how the former two models
compare to the latter in the model fit to this dataset. A compar-
ison between all four models (Table 4) shows that, although the
Bizo et al. model certainly had the highest coefficients of de-
termination of the four, it is Weber’s law and Getty’s (1975)
model, the models with the least number of free parameters,
that had the lowest AICc values. However, the difference in

AICc values between the two models with the lowest AICc
values (Getty’s model and Weber’s law) is not large enough
to confidently distinguish between these two models (Burnham
& Anderson, 1998). Therefore, the final outcome of this anal-
ysis is that Getty’s model (Eq. 4) andWeber’s law (Eq. 3) both
provide the best fit to this dataset when the difference in the
number of free parameters is taken into account.

There are, however, a few considerations that must qualify
any generalisations based on these results. This study sought
to examine the general trend in timing accuracy across a spe-
cific range of intervals. It did not attempt to address the ques-
tion of how counting affects timing accuracy across that range.
There is conflicting evidence on the effect of counting on the
accuracy of temporal judgements in humans (Hinton & Rao,
2004), but it is generally assumed that counting improves
accuracy at longer intervals, therefore lowering Wfs
(Fetterman & Killeen, 1990). Although participants were en-
couraged not to count in both the current study and Getty’s
original (1975) study, the possibility remains that the differ-
ence in the profile of the PSFs between the two studies is the
result of a higher level of motivation to comply with this
directive in Getty’s participants. This possibility is supported
by the results of the confidence question, which show that
participants in this study were the least confident that they
refrained from counting in the longer intervals (Fig. 8).
There was no evidence for a systematic relationship between
participant’s perceptions of their ability to resist counting and
the fit with the Bizo et al. model, however. To further explore

Fig. 8 Mean response to the question “How certain are you that you did
not count, tap, or use any other periodic movements to measure the
duration of the intervals in this block of trials?” (Appendix D, Fig.
D17) as measured on a five-point Likert scale where 1 = “very
uncertain” and 5 = “very certain”. Individual scores are represented by

black circles, slightly jittered for clarity; shaded areas represent 95%
Highest Density Intervals (HDIs), calculated using R's BEST (Bayesian
Estimation Supersedes the T-Test) package, and vertical bars represent
the 10th and 90th quantiles
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this relationship, subsequent research could look specifically
at the effect of counting on timing performance.

The results of this study do not seem to have been affected
by random responding or learning effects. There was, howev-
er, a significant systematic bias in the responses. Left-arrow
responses predominated in the S1 condition while right-arrow
responses predominated in the S6 condition. Due to the
randomisation in the order of presentation of SIs and TIs, this
bias is not indicative of an interval order effect. This result
might reflect an inherent bias to associate shorter intervals
with the left arrow and longer intervals with the right arrow;
however, further research would be required to elucidate the
nature of this effect.

This study was conducted with a relatively large sample
size that had a good spread of ages and a reasonable gender
balance. It is possible, however, that the large age range of the
sample (24–73 years) could have created a bias towards the
model with the smallest number of parameters by increasing
the variability in the temporal estimates and decreasing the
separation between the models. This criticism would only
apply to the AICc difference between Getty’s (1975) model
and Weber’s law, as the differences in AICc values between
the Bizo et al. (2006) model, the Killeen and Weiss (1987)
model, and Getty’s model (Table 4) are well over the value of
6 required to achieve a relative likelihood value of less than
0.05 (Navakatikyan, 2007). Therefore, the large age range
does not threaten the validity of the overall result of this study,
but it does further decrease the confidence in the statistical
validity of the small AICc difference between Getty’s model
and Weber’s law.

The results of this study suggest that the decrease in accu-
racy of temporal discriminations at longer intervals found by
Getty (1975) is not a generalisable effect. In addition, our
results and Getty’s results together suggest that different indi-
viduals may have different profiles of sensitivity to changes in
duration. Further research using a similar procedure on a larg-
er sample of participants could establish whether there are
indeed significant individual differences in the profile of the
PSF for time, and, if so, what the behavioural and cognitive
correlates of these differences might be. Individual differences
in sensitivity to time are known to exist. For example, deficits
in time perception have been found in a range of psycholog-
ical and neurological conditions (Gibbon et al., 1997), includ-
ing Parkinson’s disease (Malapani et al., 1998), Alzheimer’s
disease (El Haj & Kapogiannis, 2016), and schizophrenia
(Ueda et al., 2018). Because the paradigm used in this exper-
iment was designed to run on a standard commercially avail-
able software platform, the current study provides a reproduc-
ible procedure that could be used to explore variations in the
profile of temporal sensitivity across the human population.

Numerous variants of Weber’s law have been proposed to
model the profile of sensitivity to changes in the physical
stimulus of duration, two of which were compared in this

study. Although the most sophisticated of these models
(Bizo et al., 2006) provided the best raw fit to the data, the
increase in the fit between the twomodels was not sufficient to
warrant the extra free parameter required. Furthermore, ac-
commodations for the difference in the number of free param-
eters revealed that the two models with the smallest number of
free parameters, Getty’s (1975) model and Weber’s law
(Holway & Pratt, 1936), actually gave the best fit to the data.
This result demonstrates that the decrease in sensitivity to the
stimulus of duration found in some previous research at inter-
vals between 1 and 3 s is not a consistent effect. It also adds to
the large body of evidence demonstrating that, in certain situ-
ations and within a certain range of intervals, the profile of
sensitivity to changes in duration is best described byWeber’s
law. Thus, at least in the case of this research, Weber’s law
appears to have stood the test of time.

Data availability The data, R code for the figures, and program code for
the experiment reported in this article are stored in a permanent OSF
repository, which can be accessed at https://osf.io/ve5n8/ (https://doi.
org/10.17605/OSF.IO/VE5N8).
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