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Although visual systems are optimized to deal with the natural visual environment, our understanding of human motion
perception is in large part based on the use of artificial stimuli. Here, we assessed observers’ ability to estimate the direction of
translating natural images and fractals by having them adjust the orientation of a subsequently viewed line. A system of
interleaved staircases, driven by observers’ direction estimates, ensured that stimuli were presented near one of 16 reference
directions. The resulting error distributions (i.e., the differences between reported and true directions) reveal several
anisotropies in global motion processing. First, observers’ estimates are biased away from cardinal directions (reference
repulsion). Second, the standard deviations of estimates show an “oblique effect” being È45% lower around cardinal
directions. Third, errors around cardinal directions are more likely (È22%) to approach zero than would be consistent with
Gaussian-distributed errors, suggesting that motion processing minimizes the number as well as magnitude of errors. Fourth,
errors are similar for natural scenes and fractals, indicating that observers do not use top-down information to improve
performance. Finally, adaptation to unidirectional motion modifies observers’ bias by amplifying existing repulsion (e.g., around
cardinal directions). This bias change can improve direction discrimination but is not due to a reduction in variability.
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Introduction

In the past few decades, analysis of the statistics of real-
world scenes has suggested that the human visual system
is optimized to code the spatial information present in
natural images (Field, 1987; Simoncelli & Olshausen,
2001). Although a considerable amount of research has
explored the perception of static natural scenes (e.g.,
Baddeley & Hancock, 1991; Gallant, Connor, & Van
Essen, 1998; Hansen, Essock, Zheng, & DeFord, 2003),
considerably less is known about the processing of
dynamic natural scenes. It seems that the statistical
properties of natural movies can shape neural processing
systems (Betsch, Einhauser, Körding, & König, 2004;
Dong & Atick, 1995; Simoncelli & Olshausen, 2001; van
Hateren & Ruderman, 1998; Zanker & Zeil, 2005).
Bartels, Zeki, and Logothetis (2008) applied flow-field
analysis to natural movies to derive estimates of local
(object) motion, global (self- or camera) motion, and a
residual measure (e.g., due to illumination change). fMRI
activation measured by Bartels et al. during free viewing
of movies reveals that early visual areas are activated by

residual change, but that MT+ responds to object motion
(in a contrast-dependent manner) while medial posterior
parietal cortex (mPPC) responds in a contrast-invariant
manner to global flow, consistent with it being important
for determining self-heading.
The latter study highlights a significant difficulty for the

psychophysical study of moving natural scenes. To
quantify observer error, the true state of the signal must
be known, and the “ground truth” for motion within
complex environments is generally not known. Without
this information, it is hard to evaluate predictions of
optimal coding strategies within such environments and
compare them to human performance. The approach of
Bartels et al. assumes that flow-field estimates reflect the
true motion structure of the stimulus, which is likely
appropriate for a free viewing study where data are pooled
across many stimulus presentations, but which may be less
suitable for studies quantifying error on a trial-by-trial
basis. Another innovative approach has been to avoid
natural scenes and instead analyze the motion structure of
synthetic scenes (Tversky, 2008), but the disadvantage of
this approach is the lack of meaningful structure in such
stimuli, which may contribute to our ability to determine
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direction of motion. In this paper, we opted to establish
ground truth by applying synthetic translation to a single
calibrated natural-scene image in a variety of directions.
Although global translation of a scene is only an
approximation to naturally arising motion (which, e.g.,
contains motion parallax), knowing the true underlying
motion does allow us to perform detailed analysis of
direction discrimination errors.
It has long been known that discrimination of oblique

orientations is less precise than discrimination of cardinal
(horizontal or vertical) orientations (Appelle, 1972;
Heeley & Timney, 1988). Similarly for motion, observers
are more precise at fine direction discrimination (i.e.,
reporting whether a stimulus is clockwise or anticlockwise
of a reference direction) for motions near the cardinal
directions (0-, 90-, 180-, or 270-) than they are for oblique
directions (Ball & Sekuler, 1979, 1980; Dakin, Mareschal,
& Bex, 2005a, 2005b; Gros, Blake, & Hiris, 1998; Heeley
& Buchanan-Smith, 1992; Krukowski, Pirog, Beutter,
Brooks, & Stone, 2003). Interestingly, this oblique effect
only applies to discrimination and not detection perfor-
mance (at least in dot patterns; Gros et al., 1998). In plaids,
it is pattern motion, and not component motion, that
determines the oblique effect (Heeley & Buchanan-
Smith, 1992). Generally, the oblique effect is thought
to result from low-level tuning properties of orientation-
sensitive neurons, with oblique orientations and motion
directions being underrepresented relative to cardinal
directions (Li, Peterson, & Freeman, 2003; McMahon &
MacLeod, 2003). It has been suggested that this uneven
distribution of neural sensitivities is due to the statistical
properties of the natural environment, which exhibit a
similar bias to vertical and horizontal (Essock, Haun, &
Kim, 2009; Keil & Cristobal, 2000), and consequent
underrepresentation of the obliques. However, an oblique
effect for direction discrimination with natural images is
yet to be established.
Previously, Dakin et al. (2005a) used a noise paradigm to

determine that poor discrimination around oblique direc-
tions is local in nature: it affects the precision with which
the directions of individual elements are encoded but not
how well they are integrated across space. The particular
pattern of sensitivity loss associated with oblique motion,
expressed in a polar format, resembled a fat “X”; low
discrimination thresholds are observed only within a few
degrees of the cardinal directions. The authors went on to
compare this pattern of results with the local motion
statistics of natural movies, using a video shot from the
point of view of an individual walking through an urban
environment. This revealed that there was substantially less
energy at oblique than cardinal directions and that local
energy profiles had broader directional bandwidths (i.e.,
standard deviations) away from the cardinals. This paper
made several predictions, notably that the representation of
global direction should be prone to the effects of anisotropies

in the earlier motion coding stage. Specifically, distribu-
tions around cardinal directions should: first, have lower
standard deviations, and second, be more leptokurtic.1

Judgments of direction are not only more variable at
oblique directions, they are also less accurate (Loffler &
Orbach, 2001). Observers required to judge the absolute
direction of motion of a moving dot pattern are biased,
typically away from the cardinal directions. This tendency
is known as reference repulsion (Loffler & Orbach, 2001;
Rauber & Treue, 1998) where it is assumed that observers
use the cardinal directions (up, down, left and right) as
implicit “reference” directions, even in the absence of an
explicit reference boundary. Jazayeri and Movshon (2007)
recently observed a systematic bias in observers’ esti-
mates of motion direction in a fine discrimination task.
Their observations were well explained by a model of
sensory decoding in which the most informative signals
are those from neurons tuned away from the discrimination
boundary; such signals are preferentially weighted in a
fine discrimination task, but not in a coarse (up–down)
task. Jazayeri and Movshon’s (2007) model asserts that
the direction channels used for motion perception will
depend on the task. If this is the case, then so-called
“reference repulsion” should not be seen in absolute
judgments of direction, since the task is not a binary
discrimination task. The “off-channel” neurons are only
more informative if a decision must be made regarding the
direction of motion with respect to a boundary (clockwise/
anticlockwise of the boundary); the most informative
neurons in an absolute direction judgment must be those
tuned to the direction itself, since they are maximally
responsive. On the other hand, it is possible that
observers may compute absolute direction based on
some internal representation of cardinal directions (up/
down and left/right), in which case reference repulsion
might still be seen for directions near the cardinals.
Although absolute direction judgments have been used

previously in various motion studies (e.g., Alais,Wenderoth,
& Burke, 1994; Kim & Wilson, 1996; Loffler & Orbach,
2001; Marshak & Sekuler, 1979; Nichols & Newsome,
2002; Yo & Wilson, 1992), the shape of the distributions
of observers’ responses has never been examined. Most
motion models, like many models used to explain other
perceptual effects, assume that the error in the under-
lying sensory information has a Gaussian distribution.
However, if the oblique effect in direction perception is
to be fully understood, it is important to have informa-
tion regarding the form of the underlying error distribu-
tions. Indeed, this is essential for any explanation
proposing that percepts or decisions arise from informa-
tion from neighboring channels, for the simple reason
that changes in the mean, kurtosis, or skew of the two
neural populations can all produce the same outcome (see
Figure 1). In the experiments reported below, we use
absolute direction judgments across a range of 16 directions
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to determine the shape of the underlying error distribu-
tions and to find out whether the form of distributions
depends on stimulus direction.

General methods

Subjects

In Experiment 1, observers were the three authors
(SCD, DMA1, and DMA2) and one naive subject (MB).
All have normal or corrected-to-normal vision and are
experienced psychophysical observers. For the second
adaptation experiment, we recruited an additional naive
subject (DK) who is also psychophysically experienced
with normal vision.

Apparatus

Experiments were run under the MATLAB program-
ming environment (MathWorks) using software from the
PsychToolbox (Brainard, 1997; Pelli, 1997). Stimuli were
presented on a Mitsubishi Diamond Pro 2020U CRT
monitor calibrated with a ColourCal photometer and

linearized in software using a look-up table. The display
operated at a resolution of 1024 � 768 pixels and a frame
refresh rate of 75 Hz. The display had a mean (back-
ground) and maximum luminance of 50 and 100 cd/m2,
respectively.

Stimuli

Stimuli consisted of a moving natural scene (Figure 2)
generated by applying synthetic translational motion
(4 deg/s) to either a natural image or a fractal with a
dimension matched to the slope (averaged across
orientation) of the power spectrum of our natural scene.
We did this because we observed the overrepresentation
of vertical and horizontal structures (due to the presence
of the ground-plane and gravitational effects) in our
scene (Coppola, Purves, McCoy, & Purves, 1998; Dakin
et al., 2005a, 2005b). Our fractals, on the other hand, were
strictly isotropic so that any anisotropies in observers’
judgment of direction of such scenes could not be
attributable to the orientation structure of the source
image. Both source and fractal images were normalized
to have maximal Michelson contrast, that is, minimum
and maximum values were scaled between 0.0 and 1.0,
respectively. The speed used (4 deg/s) was picked to be

Figure 1. (a) We generally assume that observers’ performance of a 2AFC “clockwise versus anticlockwise of vertical” discrimination is
determined by a representation limited by Gaussian direction uncertainty. Performance is determined by the extent of overlap between the
red and blue channel profiles (shaded) that encode information just off the reference direction, which predicts discrimination performance
(green line). (b) When performance improves, we assume it is because the variance of their representation has been reduced, leading to
less overlap (shaded region) between channels and correspondingly steeper psychometric functions (dashed line). (c–e) However,
changes in other statistical properties of the observers’ representation of direction could also lead to less overlap between channels and
steeper psychometric functions. For example (c) could explain why prolonged adaptationVwhich leads to pronounced repulsion in
perceived direction away from the adapterVcan produce improved discrimination under some circumstances. Note that mixtures of these
effects could also serve to cancel one another out.
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close to the values used in Gros et al. (1998; 5.6 deg/s)
and Loffler and Orbach (2001; 3.5 to 5.6 deg/s). We would
predict that directional accuracy would improve at faster
speeds, but that this would be due to oriented “motion
streaks” providing helpful orientation cues (Geisler,
1999).
Stimuli were 15-frame movies that took 200 ms to

display at the monitor’s frame rate of 75 Hz. Motion was
generated in hardware using the OpenGL capabilities of
the graphics card (NVIDIA GeForce 7300 GT) accessed
via the PsychToolbox (Brainard, 1997; Pelli, 1997). The
method used to select the directions in which stimuli
moved, on a trial-by-trial basis, is described in the
Procedure section below.
The source natural image was image “imk00183.iml”

from the Van Hateren calibrated image database (http://www.
kyb.mpg.de/bethge/vanhateren/index.php; van Hateren,
2007). We wanted our stimuli to present observers with a
task whose difficulty was representative of the challenge
the visual system faces in estimating the direction of
motion of complex natural scenes. To this end, we set
about first estimating the degree of directional ambiguity
present when a subset (200 images) of the van Hateren
image set was translated in directions from 0 to 360-
(Figures 2c and 2d).
We assume that the primary source of ambiguity in

observers’ ability to determine the direction of a natural
scene will be the well-known “aperture problem.”
Because motion-selective neurons in the primary visual
cortex are able only to signal direction perpendicular to
their preferred direction, the speed and direction of a
straight contour passing through their receptive field is
intrinsically ambiguous. For this reason, images domi-
nated by edge structure present a particular difficulty that
images dominated by texture do not. We therefore
computed a metric for the degree to which a natural
image was dominated by edges or texture. Specifically, we
generated a large number of 15-frame movies by trans-
lating a given scene at 4 deg/s (the speed to be used in our
psychophysical experiment) at directions densely sampled
around the clock. We superimposed the frames of each
movie to generate a “motion-streak” image, which we
then convolved with a bank of Gabor filters (with peak
spatial frequency set to 128 cycles/image) in quadrature
phase. The sum of squares of the pair was used to estimate
energy as a function of orientation for a given direction of
translation. Sample histograms are presented in Figure 2d,
where each vertical slice is a histogram for a single
motion direction where vertical position codes image
orientation (which has been phase shifted to match the
motion direction). Thus, a narrow horizontal line in this
representation (Figure 2d, top left) indicates that the
orientation energy (“streaks”) arising from translation
closely matched the direction of motion (with the usual
T: ambiguity). This is consistent with scenes being
dominated by texture, whereas images that are dominated
by edge structure (Figure 2c, lower right) generate

histograms whose orientation structure (both the mean
and the range) is much more dependent on the direction of
motion in which they are translated (Figure 2d, lower
right). We took the covariance of these histograms as a
simple index of directional ambiguity. The image even-
tually selected fell near the middle of the range of values
computed and was also selected to contain both texture
and edge information and to avoid the presence of
specularities that can dominate the gray-level range in
linearized natural scenes.

Procedure (no adaptation)

Observers fixated centrally on a continuously visible
marker and were presented with a 200-ms movie
sequence, after which they were required to adjust the
orientation of an on-screen indicator lineVusing the
computer mouseVto match the perceived direction of
motion that had just been presented. No time limit was
enforced, although observers generally indicated their
choice within 1–2 s. Observers were permitted to move
their eyes freely during the response phase.
A run consisted of sixteen interleaved blocks of

32 trials, and observers performed between 4 and 8 runs of
each condition. Each block drove a separate adaptive
staircase (QUEST; Watson & Pelli, 1983) that estimated
direction discrimination performance around a particular
reference direction, with a total of 16 reference directions
tested (0-–337.5- in linear steps of 22.5- where 0- is
horizontal rightward motion). QUEST generates a single
stimulus value, the response to which will, based on a
Bayesian model observer, minimize uncertainty on
QUEST’s subsequent estimate of threshold. QUEST
generates only a single value (e.g., 5-), which we used
to determine the magnitude of the difference between the
direction of stimulus motion and a given reference
direction. The sign of the motion stimulus was selected
randomly (i.e., a QUEST-generated value of 5- could lead
to a cue of 85- or 95- in the 90- reference direction
condition), so that both sides of the reference direction
were sampled.
Figure 3 illustrates how we converted the observers’

(essentially analog) responses into digital (clockwise
versus anticlockwise) responses that were used to drive
the QUEST threshold estimation procedure. Note that this
procedure was used only to sample an informative range
of directions around a given reference direction. For a
given reference direction, QUEST generated a motion cue
value (which we assigned a random sign relative to the
reference). In Figure 3a, that motion cue is positive (i.e.,
clockwise of the reference). The motion cue is presented
to the observer who estimates its direction with an analog
response (report). In this case, their report is clockwise of
the reference direction (computed using Equation 1
below), and this is classed a correct response that would
lead QUEST to reduce cue size on the subsequent trial. In
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Figure 3b, a negative cue is presented, but the observer’s
report is clockwise (positive) of the reference direction
and this is classed as an incorrect response (leading to an
increase in cue size). In brief, observers’ responses are
correct only if they are the same “side” of the reference as
the true/cued direction. On each trial, we record (a) the
reference direction, (b) the cued direction, and (c) the
reported direction. The difference between true and

reported directions (Eerror) will form the basis of our
analysis below.
Note that the primary goal of the QUEST procedure

was to concentrate stimulus directions at informative
points relative to the reference directions. We elected
not to simply present stimuli at predetermined directions
to avoid subjects being able to use this information
strategically in making their judgments (e.g., “it looked

Figure 2. (a) The natural image used in psychophysical experiments. On each frame of the stimulus movie, a portion of a large image was
revealed through a two-dimensional raised cosine window. By offsetting the image on each frame, we generated translational motion
behind a static aperture. Here the solid and dashed lines depict the portion of the image revealed in frames 1 and 2, respectively, i.e., the
resulting movie depicted downward motion. (b) A fractal with a similar fractal dimension to (a). The image was selected to be typical in
terms of the ambiguity of its direction under synthetic translation. We estimated motion ambiguity by assessing the degree to which stimuli
were prone to the “aperture problem.” (c) Nine images ordered (from top left to bottom right) in decreasing consistency of orientation
structure (“streaks”) that arise when the image is translated in different directions, and the resulting frames superimposed. (d) Histograms
of filter energy as a function of motion direction ( è ) and streak orientation (kstreak normalized to the difference between itself and motion
direction) for images in the corresponding locations in (c). The x-axis shows direction of motion (0 to 360-). The y-axis shows deviation of
motion streaks from motion direction (j90 to +90-). Images with uniform textures (e.g., top left of (c)) make streaks that align closely with
motion direction (leading to a horizontal band in the resulting histogram) but for images dominated by edges (e.g., bottom right of (c)) there
are large deviations of oriented steaks from the direction of motion (due to the aperture problem) leading to irregular structure in the
resulting histogram. We used the histograms to compute a measure of “streak consistency” and selected a source image that fell in the
center of the range, i.e., one that contained both texture and edges.
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near-vertical, I know one of the test directions is vertical,
I will report verticalI”). We used QUEST rather than
simply randomizing direction (on a trial-by-trial basis) so
that we could more efficiently concentrate stimuli on
directions that were close to the subjects’ discrimination
threshold for a given reference direction. Indeed, in
similar experiments (using “apertured” natural stimuli;
Kane, Bex, & Dakin, submitted) using random cue
directions, we report similar patterns of results to those
reported below.

Procedure (adaptation)

The procedure for the adaptation experiment was
essentially the same as described above except that the
first trial of every sequence was preceded by a 30 s adapting
sequence of the stimulus moving rigidly in one direction
(either 135- or 90-, depending on the block). Subsequent
trials were preceded by a 3 s top-up adaptation. We also
elected not to test the full 0–337.5- range, since pilot data
indicated that adaptation effects were confined to a range
around the adapting direction. Consequently, we spaced nine
test directions more finely at T15-, T7.5-, T3.75-, T1.87-,
and 0- relative to the adapting direction.

Analysis

Below we analyze the subjects’ distributions of errors
using variety of summary circular statistics. The simplest
way to compute the (signed) difference between two
directions is to use a complex polar representation:

$E ¼ ji ln
eiE1

eiE2

� �
: ð1Þ

For a true/cued direction Etrue and a given estimated
direction Eest, we use Equation 1 to compute a signed

directional error Eerror. In this paper, we will adhere to the
convention that 0- indicates rightward horizontal motion,
90-, upward vertical motion, 180- leftward horizontal
motion, etc. To remain consistent with this convention,
positive errors are anticlockwise, and negative errors are
clockwise, of the true direction.
We divided all observers’ trials for a given image

condition into 16 blocks. Each block was centered on
Eblock (0-, 22.5-, I, 337.5-) and data were derived from
trials when Etrue fell in the corresponding range: 0- T
11.25-, 22.5- T 11.25-, I, 337.5-. Blocks contained
between 75 and 311 samples (depending on observer and
direction). For each block, we summarized the distribution
of signed directional errors between the true and estimated
directions (estimated as above) using the following
statistics (Mardia & Jupp, 2000). The mean direction (E)
is defined as

E ¼
tanj1ðS=CÞ if C Q 0

tanj1ðS=CÞ þ : if C G 0

;

8<
: ð2Þ

where

S ¼ 1

n

Xn
j¼1

sinEj and C ¼ 1

n

Xn
j¼1

cosEj: ð3Þ

In Matlab, E may be computed using atan2(S, C).
Below, we typically plot the mean directional bias, which
is simply the directional error between E and Eblock
for a given block. Thus when presented with vertical
upward motion (90-) if observers systematically reported
95- (5- anticlockwise of the reference), then their bias
would be +5-.
The second summary statistic we use is the circular

standard deviation (AE). The mean resultant length

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ C2

p
; ð4Þ

Figure 3. Schematic representation of our task. (a, b) Subjects were presented with a particular direction of motion (Cue) and made a
judgement of its direction (Report) by adjusting the orientation of a subsequently viewed line. The error in their report (Eerror)Vthe signed
difference between the presented direction and the subjects’ reportVwas recorded and was the primary measure of performance
analyzed below. The sign of their report with regard to a particular reference direction (Ref ; unknown to the observer) was used solely to
drive the QUEST staircase procedure. In this way, the staircase concentrated the motion cues on informative directions around a
particular reference direction.
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can be transformed into the circular variance

V ¼ 1 j R; ð5Þ

because we are dealing with unit vectors, 0 e V e 1.
Mardia and Jupp (2000) show that this measure can be
transformed into a measure of circular standard deviation
using

AE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2lnð1 j VÞ

p
; ð6Þ

which takes on the values [0, V]. Mardia and Jupp (2000)
go on to define circular skewness as

+E ¼
R2sinðE2 j 2EÞ
ð1 j RÞ3=2

; ð7Þ

and circular kurtosis as

.E ¼
R2cosðE2 j 2EÞ j R4

ð1 j RÞ2 ; ð8Þ

where Ep and Rp denote the sample mean direction and
sample mean resultant length of pE1, I pEn. Skewness
quantifies the degree of asymmetry of a distributionVi.e.,
the difference in a distribution’s slope either side of its
peakVwith positive and negative skews indicating that
the slope is steeper clockwise or anticlockwise of the
peak, respectively. Positive kurtosis indicates that a
distribution is more “peaky” (leptokurtic) than a Gaussian
distribution, and negative kurtosis that is “flatter/more
uniform” (platykurtic).
Note that we shifted and scaled the numerical estimates

from Equations 7 and 8: our skew measure was � +E
2
ffiffi
2

p and
our kurtosis measure was 3 +

.E
2
. We did this to bring these

measures into correspondence with linear estimates of
skewness and kurtosis for low variance distributions, i.e.,
where wrapping is not a significant issue. Thus, for a
Laplace (double exponential) distribution, both the stan-
dard linear kurtosis and our scaled circular kurtosis are 6.0.
Because we did this, and because our error distributions
always fell within the range T45- (no subjects ever made a
larger error across all conditions), non-circular summary
statistics will produce similar values to those reported
below.

Experiment 1: Perceived direction
of motion in natural scenes

In the first experiment, we asked observers to adjust the
orientation of a line to match the perceived direction of

motion of a rigidly translating image: either a natural
scene or a spatially unstructured fractal pattern. Below, we
analyze and compare observers’ errors in judging the
direction of these two kinds of image.

Results

Figure 4 presents polar histograms of (a) presented and
(b) reported directions of a moving fractal in the 16
conditions tested (pooled across the sign of the stimulus
motion cue within a given block) across all runs
performed by one subject (DMA1). Color of shading
indicates the reference direction around which measures
were taken (the key is in the lower left corner of (a)). The
white or black thick lines inset in the center of Figures 4a
and 4b plot the summary histograms of all directions
presented or reported, respectively, pooled across blocks.
Figure 4c plots the specific pattern of errors made by
observer DMA1 in the 16 interleaved conditions tested,
pooled across all runs. Each histogram plots binned data
(blue points) along with the best-fitting wrapped Gaussian
function, for direction estimates made by subjects when
the true direction of motion fell within T11.25- of the
block direction (bold type, inset top left in each plot).
Note that error distributions are narrower and taller around
cardinal (0-, 90-, 180-, and 270-) than other directions.
The fact that observers’ estimates are less variable around
these directions accords with the known oblique effect for
direction discrimination (reviewed in the Introduction
section).
That the observers’ task was to set a line’s orientation to

match the perceived motion direction leads to the
question of whether the superior performance with
patterns moving along cardinal directions could be
attributable to better orientation acuity at cardinal ori-
entations. However, it is unlikely that orientation acuity
could set the limit on observers’ performance because it is
much more precise than motion acuity at both cardinal
and oblique orientations/directions (Appelle, 1972; Gros
et al., 1998; Westheimer, 2003). For this reason, most of
the variance in our measurements must reflect the
contribution of the motion system. With this said, it is
still possible that the two “oblique effects” are related.
Indeed, Xu, Collins, Khaytin, Kaas, and Casagrande
(2006) reported that the higher representation of cardinal
than oblique orientations in V1 of owl monkey is mirrored
in MT, which they suggest may be the neural under-
pinning of the oblique effect for motion.
Inset into each plot in Figure 4c is a table of four

statistics indicating the mean (bias), standard deviation,
skew, and kurtosis of each corresponding data set. These
statistics are plotted, as a function of the cue motion
direction (within a block), in Figures 4d–4g. Two notable
features emerge from this individual’s data, in addition to
reduced variability on judgments around cardinal direc-
tions. First, reports are biased, falling in the range T10-,
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Figure 4. Data for fractal patterns. Colored regions are histograms (2- bin width) of directions (a) presented and (b) reported over
3392 trials by observer DMA1. Dashed black lines show the reference directions used to position the stimulus directions; histograms
outlined in black and white are for stimuli presented clockwise or anticlockwise of the reference, respectively. These data are blocked by
condition, but the white insets in the center of each plot are histograms (6- bin width) of directions, presented or reported, respectively,
across all conditions. (c) Histograms of signed errors between DMA1’s report and the true direction of motion in each of the 16 reference
direction conditions. Blue symbols are data, the red line is the best-fitting wrapped Gaussian, and the legend in each plot gives the bias,
standard deviation, skew, and kurtosis of each distribution. (d–g) Plots of these four statistics for this subject’s data, as a function of the
stimulus direction.
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which is substantial given that variability is between
È5- (cardinals) and È10- (obliques). Second, Figures 4f
and 4g show that while errors are symmetrically dis-
tributed around the true directions, those errors are not
consistently Gaussian-distributed but are more “peaky”
around cardinal directions. This is important since the use
of two-alternative forced choice procedures to assess
direction discrimination makes assumptions about the
nature of observers’ errors, including that they will be
Gaussian-distributed (Figure 1). These data indicate that
this assumption is being violated for this task.
Figure 5 pools summary statistics of error distributions

from four subjects’ direction judgments made with the
translating fractal image. We note a generally similar
pattern of results to those observed in individual data
(Figures 4d–4f) although some features of the results are
now clearer. In particular, the bias data, plotted in
Figure 5a, are again in the range T10- and tend to
approach 0- on the cardinal direction. They also tend to be

negative (more clockwise) for slightly clockwise direc-
tions and positive (more anticlockwise) for directions
slightly anticlockwise of cardinal directions. This is
reference repulsion (Rauber & Treue, 1998): observers
are likely to be using the cardinals as an internal
“standard” for their judgments, and because the most
informative channels for performing the task tend to be
located slightly clockwise and anticlockwise of the
cardinal reference, this can bias the appearance of the
stimulus (Jazayeri & Movshon, 2007). Our results are not
as clear as those from Rauber and Treue (superimposed in
Figure 5a in orange), as our data indicate reliable
repulsion only around 90- and 180-. However, we note
that Rauber and Treue pooled across 11 subjects to gain
their effect and that others have failed to find reliable
reference repulsion effects at all (Wiese & Wenderoth,
2008).
To what extent might the findings in Figure 5 be

determined by the nature of the stimulus, and how much

Figure 5. Four statistical moments of all observers’ error distributions for judging the direction of a translating fractal pattern. Symbols show
estimates derived from individual observers’ data (direction errors relative to the true/cued direction), error bars indicate 95% confidence
intervals on those estimates derived using a bootstrap, and shaded regions indicate mean values across subjects. (a) Directional bias tends
to be positive when just clockwise, or negative when just anticlockwise, of cardinal directions indicating that subjects were prone to
“reference repulsion” (orange line; Rauber & Treue, 1998). (b) Two estimates of precision: open symbols show the estimate of
discrimination threshold (across subjects) derived from the QUEST adaptive staircase procedure, while filled symbols show the standard
deviations of observers’ distributions of direction judgments. Note that both estimates are lowest on the cardinal directions, a
manifestation of the well-known oblique effect, but that QUEST tends to systematically overestimate threshold. (c) Skewness is near zero
across direction. (d) Kurtosis (the “peakiness” of the error distribution where 3.0 is Gaussian) is markedly elevated on the cardinal axes.
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by the observer? To find out, we also measured absolute
direction judgments for translating natural images. Such
stimuli allow us to study two additional factors that may
contribute to direction judgments under more natural
conditions. Although natural scenes contain extended
contour structure and may therefore potentially suffer
from the aperture problem, they also offer the opportunity
for the observer to use top-down information to constrain
their judgments (using recognizable visual objects, etc.).
Results for natural images are plotted in Figure 6 and
show a very high level of agreement with performance
measured with the drifting fractals (superimposed as blue
dashed lines). The very similar results suggest that the
pattern of results observed above is linked to the observer
and not the stimulus. The natural image data show a near-
identical pattern of bias, similar variability (6.2- on the
cardinals and 9.1- on the obliques, an average elevation of
45%), skewness is again minimal (averaging j0.06), and
kurtosis is generally slightly higher (4.5 on the cardinals
compared to 3.2 on the obliques). In Figures 5 and 6, the
standard deviation estimate averages 7.8- (group average,
pooling over all directions). Therefore, the variability of
direction judgments for natural images and fractal patterns
are very similar, although several times higher than 2AFC

discrimination thresholds (82% correct) obtained with
translating dot patterns moving in cardinal directions
(Dakin et al., 2005a, 2005b).

Experiment 2: Effect of adaptation
on perceived direction of motion
in natural scenes

In the last experiment, we described the pattern of errors
that observers make when judging the absolute direction
of a translating image. In this experiment, we investigated
the effect of prolonged adaptation to a moving natural
scene on those error distributions. Our reason for looking
at adaptation was to address the long-standing issue of
what the mechanism of adaptation is, and by extension to
consider whether it might confer functional benefits on the
observer. As outlined in the Introduction section (see
Figure 1), analysis of data based on binary forced choice
discrimination may misattribute any improvement in
performance following adaptation to a reduction in

Figure 6. As for Figure 5, except that the translating image is a natural scene rather than a fractal. Note the high level of consistency with
most measures from the fractal image data in Figure 5 (shown by the blue dashed line), except that the natural scene elicits error
distributions with consistently higher kurtosis.
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variability in the underlying representation of direction,
when it may instead be due to a change in mean, kurtosis,
or skew of direction information. In this experiment, we
again use absolute direction estimation, this time to reveal
the effect that adaptation has on subjects’ distributions of
direction judgments.

Results

Direction estimates, pooled across all five observers, are
plotted in Figure 7. Raw data (filled circles)Vthe number
of times observers reported a given direction as a function
of the true directionVhave been fit (using the Matlab
fmins function) with a five-parameter wrapped asym-
metrical type VII Pearson distribution. The probability
density function for a standard type VII Pearson distribu-
tion is defined (Pearson, 1916) as

p Eð Þ ¼ 1

!B m j 1
2
; 1
2

� � 1þ E j 2

!

� �2
" #jm

; ð9Þ

where B is the Beta function (evaluated using a numerical
approximation in Matlab) and

! ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m j 3

p
; ð10Þ

where m controls the kurtosis of the distribution (m 9 3/2).
The parameter A and 2 control the mean and standard
deviation of the distribution. An asymmetric prediction is
derived by generating two distributions with a common
mean and kurtosis (the first and second free parameters),
but with different standard deviations (A1 and A2, the third
and fourth parameters), matching the peaks of the two
distributions and joining the left component of one
distribution with the right of the other, at the point of
the mean. The final (fifth) parameter is an overall scaling
factor. Note that these distributions are fit only for
graphical purposes: all statistics of kurtosis, etc., reported
below are computed from the raw data not from the
parameters of the fit.
The resulting fits (Figure 7, shaded regions) generally

provide very good characterizations of the data. Two

Figure 7. Effect of adapting to cardinal (left side) and oblique (right side) directions on subsequent direction estimation. The x-axis is the
absolute test direction, and data show the pooled frequency with which the five observers reported a direction of motion given a test
direction indicated by the figures shown in the colored boxes. Raw data (filled circles) have been fit with a 5-parameter asymmetric
Pearson distribution. For each row of the figure, the triangles indicate the true test direction and the stars the mean direction reported (i.e.,
over the color-shaded histogram, key to colors is boxed in the lower left). The magnitude of offset between the stars and triangles is an
indication of the amount of “reference repulsion.” Note that the left distributions around 90- (teal-colored) are substantially narrower and
more “peaky”Vboth before and after adaptationVthan the corresponding distributions on the right (i.e., centered on 135-). Note also that
the distributions on the left (e.g., 97- and 88-) tend to be skewed such that the tail is longer pointing away from the true direction; that is
when the mean is to the left/clockwise of the true direction the skew is negative and that when the mean is to right/anticlockwise of the true
direction the skew is positive. Fewer systematic changes in skew are evident in the 135- condition (e.g., note the switch in sign of skew
between distributions centered on 139- and 143- in the unadapted 135- condition).
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general points emerge from inspection of these data. First,
we observe some similarities and differences between
these distributions and the data collected in Experiment 1.
Distributions of direction judgments around 90- are still
narrower and more peaky than around 135-. We again see
reliable repulsion of the mean reported direction of the
test (stars) compared to its true direction (triangles).
However, this effect is now evident both around 90- and
135-. This is interesting because we did not observe
reliable direction repulsion around 135- in Experiment 1
(see Figures 5 and 6); if anything the trend was for
attraction toward 135-. There are two possible explan-
ations for this. First, we sampled test directions much
more coarsely (22.5- steps from 0 to 347.5-) in Experi-
ment 1 compared to here (T15-, T7.5-, T3.75-, T1.87-, and
0-), so that we may have simply missed the fine structure
of the observers’ bias around 135-. Second, the direction
repulsion effects we see (in the pooled data) may in some
sense be defined relative to the center of the range of
directions presented. This makes sense if the observers are
using this direction as an implicit reference relative to
which they make their (absolute) judgments of direction.
We return to this point in the General discussion section.
An interesting difference with the data from Experiment 1
concerns the skew of the distributions. In Experiment 1,
distributions of reported directions were fairly symmet-
rical (i.e., skew was on average 0) whereas here we see
pronounced skew of some distributions (e.g., with a 94-
test). The direction of this skew is such that the longer
tails tend to point away from the true direction. We return
to this point below when we compare quantitative
estimates of skew across conditions.
A second point to be drawn from Figure 7 is that

distributions change subtly after adaptation to 90- motion
(left set of plots) but less so with adaptation to 135- motion
(right set). In particular, the distributions shift away from
the 90- adapting direction (compare the separation of
starsVthe mean of each distributionVwith trianglesVthe
true test direction, before and after adaptation) but less so
from 135-. Adaptation does not appear to change other
features of the distributions (such as their width).
We next consider statistical properties of the observers’

distribution of direction estimates before and after
adaptation. The effect of adapting to 90- and 135- on
subjects’ direction estimates are plotted in Figures 8
and 9, respectively. Considering first the unadapted
performance for 90- plotted in Figure 8 (open symbols,
dashed lines), we observe broadly similar patterns of
results to those described above for Experiment 1.
However, the finer sampling of direction used in this
experiment (9 values between T15-) has revealed two
points very clearly. First, there is a sigmoidal pattern of
bias (Figure 8, left column), which indicates a pronounced
“reference repulsion” (Rauber & Treue, 1998). Observers’
direction judgments reveal that they effectively “exaggerate”
the clockwise or anticlockwise directions when presented
with motion that is slightly off the cardinal axis. It is

interesting to note how smoothly this repulsion increases as
one moves only a few degrees either side of the cardinal
direction, and that it returns to veridical (i.e., returns to
the unit slope line) at about T15- from vertical. The
second point to emerge clearly from these data is the
modest but systematic modulation of skew around 90-
(Figure 8, third column), which we did not detect using the
coarser sampling of test directions in Experiment 1.
Specifically, subjects’ distributions for directions just either
side of the cardinal are skewed with opposite skew sign
(compare distributions for 84- and 96- tests in Figure 7).
The switch in skew sign around the cardinal is consistent
with the bias underlying the reference repulsion effect,
which also switches in sign around the cardinal direction.
The other two statistics plotted in Figure 8 show that there
is a dip in the standard deviation around 90- showing that
there is an oblique effect of similar magnitude to that of
Experiment 1 (see Figures 5 and 6) as well as a robust peak
in the kurtosis of direction distributions near the cardinal
direction.
Turning to the adapted performance for 90- (Figure 7,

filled symbols, solid lines), there is no clear evidence
that adaptation alters any of these statistics, with the
exception of bias. This is consistent with the well-known
repulsive effects of adaptation on perceived direction
(Levinson & Sekuler, 1976). What is new here is that our
data (column 1) indicate that the bias change from
adaptation arises from an amplification of underlying
direction repulsion (i.e., present before adaptation). For
example, the tendency to see directions that are slightly
clockwise of 90- as further clockwise than is veridical is
exaggerated by adaptation (and vice versa for anticlock-
wise directions). This effect is present but subtle for
subject SCD but is pronounced for MB. The modulation
of skew around 90- (with equal and opposite signs)
observed in the unadapted condition is also seen after
adaptation. Although the skew effect is not altered by
adaptation, the replication of this subtle effect is striking.
Another interesting aspect of the data is that there was

no change in the standard deviation of direction distribu-
tions following adaptation. These data argue the notion
that adaptation might reduce variability in the representa-
tion of motion direction that could explain established
improvements in discrimination around the adapted
direction (Phinney, Bowd, & Patterson, 1997). We shall
see in the simulations below (Figure 9) that a change in
bias is sufficient to produce a robust improvement in
2AFC discrimination performance.
Figure 8 plots an identical analysis of direction errors

after subjects adapted to motion in a non-cardinal
direction (135-). Looking first at the no-adapt conditions
(open symbols, dashed lines), we observed less reference
repulsion for 135- than for 90- (but still substantially
more than reported in Experiment 1) and confirmed the
oblique effect in that standard deviations are greater for
135- than for 90- and exhibit a clear peak around 135-.
Data for the higher order statistics of skew and kurtosis
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are more variable and show no systematic change. Turn-
ing to the adaptation data (filled symbols, solid lines), we
again see that standard deviation is not reduced by
adaptation (consistent with adaptation to 90- directions),
and reference repulsion is not modulated by adaptation.
Finally, we can use the subjects’ error distributions to

predict their performance on a 2AFC discrimination task,
assuming independent representation of the directions
presented in the two intervals. We ran a Monte Carlo
simulation to simulate psychometric functions, which are
presented in Figure 10. The simulation shows that
adaptation to 90- results in a statistically significant
improvement (based on t-tests of the bootstrapped
estimates of the A parameter of the psychometric
functions) in four of the five subjects (all but DMA1)
and that adapting to 135- produces improvement in only
one of the subjects (DMA2). The reliable improvement in
discrimination following adaptation to 90- is interesting
because it occurred even though the variability of

direction judgments was not altered by adaptation. As
the group averages in Figure 8 show, the primary effect of
adaptation was to alter bias, not standard deviation. This
simulation demonstrates that adaptation can lead to
improved discrimination due to changes in bias.

General discussion

In two experiments, we have characterized the distri-
butions of absolute direction judgments made by observ-
ers viewing translating natural scenes. Using large
numbers of observations (each subject made between
1024 and 2048 direction judgments per distribution), we
were able to characterize the first four statistical
moments of each distribution, that is, the mean, standard
deviation, skew, and kurtosis. We compiled distributions

Figure 8. Effect of adapting to a cardinal direction on subsequent direction estimation. The abscissa shows the actual test direction relative
to the 90- adapter (adapt minus test); the ordinate shows perceived test direction (relative to the adapter). The four summary statistical
descriptions of subjects’ errors are plotted for two subjects and the average across all five observers. Note that the reference repulsion
effect (the sigmoidal modulation of bias around 90-) is amplified with adaptation (particularly in MB) but that generally other statistics
remain largely unaffected.
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for 16 directions equally spaced around the clock in
Experiment 1, and for 9 directions finely spaced around
a cardinal (90-) or an oblique (135-) direction in Experi-
ment 2. Measurements made in Experiment 2 were made
with and without prior adaptation to the cardinal or
oblique direction.
Looking at Experiment 1, the clearest result concerned

the variation in standard deviation over direction. Stan-
dard deviation was lowest for cardinal directions, and for
a narrow range either side of the cardinals, and was
elevated elsewhere, revealing a broad region subject to the
“oblique effect.” The other clear effect concerned kurtosis,
with distributions on the cardinals having elevated
kurtosis values above the value of 3.0, which indicates a
perfect Gaussian form. Values above 3.0, such as
observed on the cardinals, indicate a leptokurtic or
“peaky” shape with a disproportionate number of near-
zero values. Finally, there was a tendency for the mean of
distributions close to the cardinal directions to be pushed
away from the cardinal. This tendency to perceive
directions close to the cardinals as being further from
the cardinal than they truly are is known as “reference
repulsion” (Rauber & Treue, 1998) although in our case

since no reference was present on screen we infer that
observers use the cardinal directions as implicit references
when making judgments of absolute direction.
Turning to Experiment 2, we measured how perception

of motion in the cardinal or oblique directions was
affected by preadaptation to those directions. The test
directions around these two standard directions were
finely spaced (9 directions spanning T15-) and clearly
showed a systematic effect of reference repulsion around
the cardinal direction (Figure 8, left column), an effect
that was enhanced by adaptation. In this experiment,
unlike in the last, we do observer reference repulsion
around the oblique (Figure 9, left column), but adaptation
exerts less influence. The fine spacing of test directions
also revealed an interesting change in skew. The skew
value departs from zero (a value indicating symmetry) for
directions close to 90- and does so with equal and
opposite magnitude either side of 90-. This skew effect
was constant between adapt and no-adapt conditions.
Together with the dip in standard deviation for the
cardinal direction, and the increase in kurtosis at the
same direction (replicating the kurtosis result from
Experiment 1), these data describe a narrow, peaky

Figure 9. As for Figure 8, except the adapting direction is to a non-cardinal direction (135-). Again summary statistical descriptions of
subjects’ errors are plotted for individual subjects and the average. There is a much more modest reference repulsion effect around 135-,
which is not greatly shifted under adaptation. No other systematic effects of adaptation are apparent in the other statistics.
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distribution centered on the cardinal, flanked on each side
by skewed and slightly broader distributions (Figure 7).
As shown in Figure 7, the flanking distributions have their
steep sides bordering the narrow and peaky cardinal
distribution and their shallow side trailing off more
gradually toward oblique directions. Adaptation in the
cardinal direction has the effect of shifting these skewed
distributions away from the cardinal but leaves them
otherwise unaffected.
One very interesting observation to emerge from

Experiment 1 is that estimates of directional precision
varied quite dramatically depending on the procedure used to
quantify it. Figures 5b and 6b plot two estimates of pre-
cision: the standard deviation of the direction distributions

compiled from our absolute direction judgments and the
estimate of precision produced by the QUEST adaptive
staircase procedure (recall that QUEST was used as a tool
to sample the directions presented around each of the 16
directions used in Experiment 1). The open symbols and
dashed lines in Figures 5b and 6b show the group average
estimate of discrimination threshold derived from QUEST,
while outer limits of the shaded region show the
standard deviations of observers’ distributions of judged
direction. Although both measures agree qualitatively, in
that both produce estimates that are lowest in the cardinal
directions (the well-known oblique effect), they differ
markedly in quantitative terms. The precision estimate
(i.e., standard deviation) from QUEST tends systematically

Figure 10. Predicted psychometric functions from a Monte Carlo simulation based on three subjects’ error distributions from the adaptation
experiment. The top row shows predictions for 90- adapters, the bottom row for 45- adapters, and the boxed caption shows the predicted
threshold in degrees.
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to overestimate the precision of the empirically obtained
distributions.
The difference between the two measures of precision is

significant because one is empirically derived from actual
distributions while the other (QUEST) is theoretically
derived. That is, QUEST is driven by subjects’ discrim-
ination performance, which in turn is supposed to reflect
underlying variability in the observers’ representation of
the stimulus attribute. Crucially, this approach assumes that
observers are unbiased and display Gaussian-distributed
errors. That is, the assumed underlying distribution has a
bias of 0 and a kurtosis of 3. The data from our empirically
derived direction distributions plotted in Figures 5 and 6
show that this is not true of observers and for this reason
the use of thresholds derived from QUEST are not a true
reflection of observer variability. Our method produces a
standard deviation estimate of 7.8- (the group average,
pooling over all directions), while the QUEST estimate is
11.8-. Therefore, the assumptions underlying QUEST lead
to an overestimation of the empirical standard deviation
by a factor of 1.5, and this tendency was exaggerated in
the oblique directions where the overestimation increased
to a factor of 2.
Another interesting point to emerge from Experiment 1

is that the resolution of direction appears to be poorer
using our absolute direction task on natural or fractal
patterns than previous studies have found. The average
standard deviation in the cardinal directions is È6.5- (see
Figures 5 and 6) and is several times higher than the
discrimination thresholds obtained with translating dot
patterns moving in cardinal directions (È1.25-) using a
2AFC task and 82% correct thresholds (Dakin et al.,
2005a, 2005b). Why should previously reported thresholds
be so much lower than the variability in our observers’
direction distributions suggest? One possibility is that it is
due to the different stimuli used in these studies. This

seems unlikely as the translating patterns in both studies
were broadband in spatial frequency and directional
structure, and both were composed of unambiguously
translating two-dimensional texture. Moreover, natural
scenes are presumably optimal for visual processing and
performance on the fractal pattern was just as good (cf.,
Figures 5 and 6). A more likely possibility is that 2AFC
performance, assumed to depend only on underlying
variance, can exploit other statistical properties, such as
kurtosis and skew, to improve thresholds. On this point,
our results are revealing. For kurtosis (where Gaussian has
a value of 3.0), off-cardinal distributions are strongly
Gaussian (fractal pattern: k = 3.0, s = 0.26; natural scene:
k = 3.0, s = 0.27), whereas on the cardinal directions
kurtosis rises to 4.3 (s = 0.67) for fractals and 4.5 (s =
0.35) for natural scenes. Our data also reveal that skewed
distributions lie next to the cardinals (Figure 7, bottom of
third column), which may be critical as flanking distribu-
tions play a key role in improving discrimination (Jazayeri
& Movshon, 2007; Regan & Beverly, 1985). When the
elevation in kurtosis on the cardinals (indicating “peaky”
distributions) is combined with skewed flanking distribu-
tions (see Figure 9b), we consider there is ample scope for
statistics other than simple variance to drive 2AFC
performance lower than variance-only models would
predict.
The point regarding elevated kurtosis on the cardinals is

summarized in Figure 11, which replots directional errors
from the fractal condition of Experiment 1 (pooling across
subjects) in three directional categories: cardinal (0-, 90-,
180-, 270-), principal oblique directions (45-, 135-, 225-, and
315-), and other oblique directions (22.5-, 67.5-, 112.5-,
157.5-, 202.5-, 247.5-, 292.5-, 337.5-). All errors have
been normalized to zero mean and unit standard
deviation; thus the only differences between distributions
must be attributable to higher statistical properties of the

Figure 11. Errors from the fractal noise condition, normalized to have zero mean and unit standard deviation, pooled across all subjects in
the direction conditions indicated. Note that data from the cardinal conditions are “peakier” than the Gaussian prediction (red line) and that
deviation from normality leads to around 22% higher probability of near-zero errors in the cardinal case even when variance and bias of
the data have been equated.
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error distributions. The red curves plot a Gaussian with
unit standard deviation and zero mean. Note that around
the cardinal directions the proportion of near-zero errors is
substantially higher than the Gaussian model predicts.
This “cardinal effect” is on the order of 20% or so.
Looking at the variability of observers’ errors in estimat-
ing direction within these three categories, we observe an
“oblique effect.” That is, comparing the cardinals with the
pooled oblique directions, there is an increase of È45% in
standard deviation for both fractals and natural scenes.
This is substantially lower than previous estimates of the
oblique effect of nearer a 100% increase (Dakin et al.,
2005a, 2005b). Again, for the same reasons as noted
above, this overestimate may be due to the contribution of
statistics other than variability, which do not form part of
standard 2AFC modeling of thresholds.
The results of these two experiments are relevant to

related work by Dakin et al. (2005a). They investigated
direction discrimination using an equivalent noise para-
digm and concluded that poor discrimination around
oblique directions was due to precision limitations in
local motion processing, rather than to limitations at the
global pooling stage. The authors proposed a channel
model of human direction discrimination based on
wrapped Normal channel profiles, Poisson/multiplicative
noise, and maximum likelihood estimation. This model
could account for fine discrimination of clockwise/
anticlockwise directions in the presence of directional
variability and predicted that the representation of global
direction should reflect the anisotropies in the earlier local
motion stage. Specifically, they plotted the combined
(population) response of a set of filters derived from
natural motion statistics and predicted that distributions of
responses around cardinal directions should have lower
standard deviations and should be more leptokurtic or
“peaky.” The results discussed here clearly confirm these
predictions and confirm that absolute direction judgments
(global perceptual output) do reflect earlier local motion
anisotropies. Moreover, by collecting a large number of
absolute direction estimates we were able to compile
distributions and to describe their first four statistical
moments (mean, standard deviation, skew, and kurtosis)
and to describe how they vary across a 360- range of
directions. Apart from confirming kurtotic “peaky” dis-
tributions at the cardinals, and a rather narrow band of
high precision centered on the cardinals (the fat-“X”
pattern in Figures 5b and 6b), there also appears to be
modest skew in distributions just adjacent to the cardinal.
This effect was only measurable with the finer spacing of
test directions employed in Experiment 2; the intrinsic
“blurring” of responses induced by the motion-energy
filtering stage used by Dakin et al. (2005a) meant that
these authors were unable to make specific predictions
concerning skew over this range.
Finally, a comparison with earlier data estimating

oblique effects and directional precision using 2AFC
methods reveals estimates that differ substantially from

the distribution statistics reported here, suggesting that
some or all of these higher order statistics may be involved
in perceptual judgments, in contrast to standard models of
2AFC performance that consider only variability.
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Footnote

1
Kurtosis refers to the “peakedness” of a distribution. A

high kurtosis (“leptokurtic”) distribution has a taller,
sharper peak than a Gaussian distribution, with broad
light tails. A low kurtosis (“platykurtic”) distribution has a
lower, more rounded peak, with heavy narrow tails.
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