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Abstract. Vection has typically been induced in stationary observers (ie conditions providing visual-
only information about self-motion). Two recent studies have examined vection during active treadmill 
walking—one reported that treadmill walking in the same direction as the visually simulated self-
motion impaired vection (Onimaru et al, 2010 Journal of Vision 10(7):860), the other reported that it 
enhanced vection (Seno et al, 2011 Perception 40 747–750; Seno et al, 2011 Attention, Perception, 
& Psychophysics 73 1467–1476). Our study expands on these earlier investigations of vection during 
observer active movement. In experiment 1 we presented radially expanding optic flow and compared 
the vection produced in stationary observers with that produced during walking forward on a treadmill 
at a ‘matched’ speed. Experiment 2 compared the vection induced by forward treadmill walking 
while viewing expanding or contracting optic flow with that induced by viewing playbacks of these 
same displays while stationary. In both experiments subjects’ tracked head movements were either 
incorporated into the self-motion displays (as simulated viewpoint jitter) or simply ignored. We found 
that treadmill walking always reduced vection (compared with stationary viewing conditions) and that 
simulated viewpoint jitter always increased vection (compared with constant velocity displays). These 
findings suggest that while consistent visual–vestibular information about self-acceleration increases 
vection, biomechanical self-motion information reduces this experience (irrespective of whether it is 
consistent or not with the visual input).
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1	 Introduction
A compelling visual illusion of self-motion, known as vection, can be induced when a large optic 
flow pattern is presented to a physically stationary observer. Despite the apparent dominance 
of vision in this particular situation (Johansson 1977; Lee and Lishman 1975; Lishman and 
Lee 1973), a number of nonvisual senses also provide useful information, particularly about 
active self-acceleration (Benson 1990; Howard 1982; Siegler et al 2000). The vestibular system 
is more sensitive to high temporal frequency self-motion (ie greater than 1 Hz) than vision 
and is often thought to govern the perception of both linear and angular self-accelerations 
(Berthoz et al 1975, 1979; Diener et al 1982; Howard 1986; Melvill-Jones and Young 1978). 
However, while the threshold for detecting whole-body oscillation is almost ten times greater 
for those without functional labyrinths (Walsh 1961), the vestibular system cannot distinguish 
between moving at a constant velocity and remaining stationary (Benson 1990; Lishman and 
Lee 1973). In addition to the vestibular system, the somatosensory system and proprioception 
also provide useful biomechanical information about active self-motion based on the pressure 
and shear forces acting on the skin and the inertia of the limbs, respectively (Lee and Lishman 
1975; Lishman and Lee 1973; Mergner and Rosemeier 1998). Despite this, most previous 
studies have examined vection in physically stationary observers (Palmisano et al 2000, 2003, 
2008). Only a few studies have examined vection in actively moving observers in which the 
nonvisual senses to self-motion have been systematically stimulated (eg Kim and Palmisano, 
2008, 2010). The current study examines the effect of treadmill walking on vection induction.
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1.1  Effect of simulated viewpoint jitter on vection
Traditionally, it was thought that conflicts between the above-mentioned sensory systems 
(particularly visual–vestibular conflicts) would impair vection (see Zacharias and Young’s 
1981 sensory conflict theory). For example, when a stationary observer views an optic flow 
display simulating constant velocity forwards self-motion, the characteristic delay in vection 
onset (typically a few seconds) was thought to be due to the transient conflict between the 
visual and vestibular systems—with the visual system indicating that the observer is moving, 
while the vestibular system would register that he or she is physically stationary. However, 
more recent research (Palmisano et  al 2000, 2003, 2008, 2011) has consistently shown 
that adding visually simulated viewpoint jitter/oscillation to a display increases vection in 
stationary observers, even though this situation would produce sustained visual–vestibular 
conflict—the visual system would indicate horizontal and vertical acceleration throughout 
the trial, while the vestibular system would indicate that the observer is physically stationary 
(ie no self-acceleration).

More recently, vection studies have generated simulated viewpoint jitter/oscillation by 
tracking seated subjects’ physical head motions while they viewed a self-motion display 
(these fore–aft or left-to-right head motions were typically in time with a computer-controlled 
metronome). In such situations the motion of the display concomitant with the head can be 
ecological or not. Consider an observer moving their head in a plane parallel to a nearby 
stationary display simulating a window. Ecologically, the world is stable and ‘out there’. 
Therefore, owing to parallax, images of the world beyond the window should move with 
respect to the window (display) frame in the same direction as the head motion. Motion in the 
opposite direction of the head indicates an unstable world or that the environment is in front 
of the window, both generally nonecological self-motion scenarios. Moving fore–aft should 
cause expansion and contraction of the environment including the display. Contraction and 
expansion of the image within the display while moving forward and backward, respectively, 
is similarly nonecological.

Previous active seated vection studies (eg Ash and Palmisano 2012; Kim and Palmisano 
2008, 2010; Ash et  al 2011a, 2011b) had subjects move their heads from side to side or 
fore–aft, and used these tracked head position changes to move the virtual camera for the 
self-motion display to generate ecological or nonecological jittering patterns of multisensory 
stimulation. These studies have tended to find no difference between ‘ecological’ and 
‘nonecological’ jittering patterns of multisensory stimulation during active head movements. 
A recent study by Ash et al (2011a), however, showed an advantage for ecological (compared 
with nonecological) simulated viewpoint jitter in some self-motion situations.

1.2  Vection during treadmill walking
To date, only two studies have examined the effect of active treadmill walking on vection. 
In the first of these studies Onimaru et al (2010) presented expanding or contracting optic flow 
patterns (simulating forwards or backwards self-motion at 2 km h–1) to their subjects as they 
walked either forward or backward on an omnidirectional treadmill at 2 km h–1. They found 
that vection latencies were longer when subjects physically walked in the same direction 
as the simulated self-motion compared with when they walked in the opposite direction. In 
the second study, by Seno et  al (2011a), subjects viewed upward, downward, leftward, 
rightward, forward (expanding optic flow), or backward (contracting optic flow) self-motion 
displays while they were either stationary (no locomotion conditions) or walking forwards 
on a unidirectional treadmill at 2 km h–1 (with locomotion conditions). Unlike for Onimaru 
et  al (2010), the display was simulated at a much faster speed (16 m s–1 or 57.6 km h–1) 
than the treadmill belt speed. Vection induced while viewing upward, downward, rightward, 
and leftward self-motion displays resulted in longer latencies, shorter durations, and smaller 
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magnitude ratings during treadmill walking than stationary viewing conditions. However, of 
particular relevance to the current study was: (i) backward self-motion displays (contracting 
optic flow) produced better vection than forward self-motion displays (expanding optic 
flow) when the observer was stationary; but, (ii) contrary to Onimaru et al (2010), forward 
self‑motion displays (which provided consistent multisensory information about the direction 
of self-motion) produced better vection than backward self-motion displays (where the multi
sensory information about self-motion direction was inconsistent) during treadmill walking. 
Furthermore, viewing forward self-motion displays during forward treadmill walking also 
resulted in better vection than viewing these same displays while stationary.

1.3  Redundant multisensory information during treadmill walking
A number of seated (Li et al 2009; Yeung and Li  2013) and treadmill walking studies (Durgin 
and Gigone 2007; Durgin et  al 2005) have found reductions in visually perceived object 
motion during redundant multisensory situations. These previous findings appear to be 
generally consistent with Barlow’s inhibition theory, which asserts that: (i) there is a reduction 
in the salience of retinal motion during positively correlated (as opposed to uncorrelated 
or negatively correlated) multisensory events because these situations provide redundant 
information about self-motion; and (ii) redundant retinal motion signals are suppressed by 
nonvisual signals to minimise their salience. More recently, Durgin (2009) extended on 
Barlow’s inhibition theory, proposing that reductions in visually perceived display speed 
play a functional role in preserving the ability to discriminate changes in speed while an 
observer is walking forward and viewing an expanding optic flow display (this finding 
has since been replicated by Souman et al 2010). Previous vection studies have shown that 
simulated display speed (Brandt et al 1973; Dichgans and Brandt 1978) and the perceived 
speed of self-motion (Apthorp and Palmisano 2012; Palmisano 2002) are positively related 
to vection. Thus, it is possible that reported reductions in visually perceived display speed 
during forward treadmill walking while viewing an expanding optic flow display could also 
affect perceptions of self‑motion.

Importantly, Durgin et al (2005) showed that the visual consequences of head movements 
during forward treadmill walking were not responsible for these reductions in visually 
perceived display speed while viewing expanding optic flow. Durgin et al (experiment 2) 
recorded physical head movements while subjects walked forward on a treadmill and later 
on played the resulting ‘jittering optic flow’ displays back to their now stationary subjects 
(these displays simulated both forwards self-motion and the bob, sway, and lunge head 
motions). Their subjects were also shown purely radial (ie ‘nonjittering’) self-motion 
displays on half of their stationary viewing trials. The reductions in perceived display 
speed produced by treadmill walking compared with stationary viewing were the same 
regardless of whether the stationary subjects viewed smooth or jittering optic flow. 
Furthermore, Durgin and colleagues (Durgin and Gigone 2007; Durgin et  al 2005) also 
showed that reductions in the visually perceived display speed during treadmill walking 
(compared with stationary viewing) are proportional to physical walking speed, with the 
greatest reductions occurring for faster treadmill belt speeds and speeds closest to normal 
walking speeds.

1.4  Object-motion versus self-motion perception
Barlow’s (1990) theory does not explicitly state whether redundant sensory information 
generates reductions in visually perceived object motion, visually perceived self-motion, or 
both. Optic flow can arise either from self-motion or from object or scene motion and/or a 
combination thereof. If the observer perceives less object or scene motion induced by optic 
flow (despite there being no actual change in the optic flow itself ), then this might be due to 
the optic flow being perceived as resulting more from self-motion than object or scene motion. 
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A  more compelling experience of vection occurs when subjects perceive an optic flow 
display as resulting more from self-motion than object or scene motion. If reductions in 
visual motion affect only visually perceived object motion, then Barlow’s (1990) theory might 
also predict an increase (rather than a decrease) in vection during consistent multisensory 
self‑motion situations (compared with inconsistent multisensory situations), as was found 
by Seno et al (2011a). On the other hand, if reductions in visual motion also affect visually 
perceived self‑motion, then a modified version of Barlow’s theory might predict a decrease 
in vection during consistent multisensory self-motion situations (compared with inconsistent 
multisensory situations), as was found by Onimaru et al (2010).

1.5  The current study
Our experiments will further examine the effect of treadmill walking on vection in depth. 
In  experiment 1 we compared the vection induced when subjects either walked forward 
on a treadmill or viewed displays while stationary. During treadmill walking conditions 
tracked linear and rotary physical head movements were either updated into the self-motion 
display (as ecological simulated viewpoint jitter) or simply ignored (the display simulating 
smooth forwards self-motion). Passive conditions were playbacks of the optic flow display 
shown or generated in the previous active treadmill walking trials—in this case now viewed 
while standing still. Previous treadmill experiments by Seno et al (2011a) and Onimaru et al 
(2010) examined only nonjittering displays (although since their subjects’ heads physically 
moved during treadmill walking, this would have generated some additional nonecological 
2‑D visual jitter). On the basis of  previous seated vection studies (Ash and Palmisano 2012; 
Ash et al 2011a, 2011b; Kim and Palmisano 2008, 2010; Palmisano et al 2003, 2008), we 
expected jittering displays to increase vection compared with nonjittering displays when 
subjects were physically stationary. However, the effect of simulated viewpoint jitter on 
vection during treadmill walking is currently unknown. This really depends on whether 
visually perceived object motion, visually perceived self-motion, or both are reduced during 
treadmill walking. It is also possible that, on the basis of a modified version of Barlow’s 
(1990) theory, displays with simulated viewpoint jitter might show greater reductions in 
vection during forward treadmill walking than nonjittering displays (compared with viewing 
the same displays while stationary) because the former condition would provide additional 
consistent or redundant visual information about self-motion. Alternatively, as simulated 
viewpoint jitter has been shown to provide a robust advantage for vection, it is possible 
that this 3‑D perspective display jitter might continue to increase vection compared with 
constant velocity optic flow displays, even if there are significant reductions in vection 
during treadmill walking.

For the first time in a treadmill study we also investigated the effect of treadmill and/or 
display forward speed using two treadmill/display forward speeds (4 km h–1 and 5 km h–1) 
typical of human walking. Previous vection studies have examined only very slow treadmill 
belt speeds (2 km h–1) that were outside the range of normal walking speeds [the range of 
speeds for which Durgin (2009) proposes reductions in visually perceived speed are greatest]. 
Furthermore, Seno et al (2011a) used a physical display speed that was much faster than the 
physical treadmill belt speed. Thus, in the current study we were interested in: (i) examining 
walking speeds that were within the range of normal human walking speeds; and (ii) matching 
the simulated display (simulated translation) and treadmill belt speed to provide consistent 
visual and nonvisual information about self-motion. As increases in both simulated display 
speed (Brandt et al 1973; Dichgans and Brandt 1978) and the perceived speed of self-motion 
(Apthorp and Palmisano 2012; Palmisano 2002) are suggested to increase vection (at least up 
to a certain point), we might expect faster treadmill/display speeds to result in stronger, more 
compelling vection than slower treadmill/display speeds.
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Experiment 2 was specifically designed to study (and ideally resolve) the apparent 
contradiction between Ominaru et al’s (2010) and Seno et al’s (2011a) treadmill findings for 
vection. Observers viewed either expanding or contracting optic flow displays while walking 
forward on a treadmill to determine whether the visually simulated direction of self-motion 
(which was either consistent or inconsistent with the direction of the treadmill belt) affected 
vection. If redundant multisensory information about self-motion reduces vection (similar 
to Onimaru et  al 2010), then contracting optic flow should induce stronger vection than 
expanding optic flow during forward treadmill walking. Alternatively, on the basis of Seno 
et  al (2011a), if redundant multisensory information about self-motion enhances vection, 
then we might find that expanding optic flow produces stronger vection than contracting 
optic flow during forward treadmill walking.

2	 Experiment 1: vection in depth during active and simulated forward treadmill 
walking at two different speeds
Here we compared vection in depth during treadmill walking (consistent or inconsistent 
multisensory information about self-motion) with viewing a playback of these displays while 
stationary (vision-only information about self-motion). For the first time in a treadmill walking 
study we: (i) compared the vection induced by jittering (generated by the subject’s own head 
movements while walking) and nonjittering optic flow displays; and (ii) used two different 
display speeds simulating forward self-motion at either 4 km h–1 or 5 km h–1, which are both 
within the range of average human walking speeds. Unlike the current experiment, previous 
vection studies: (i) did not update subjects’ physical head movements generated during 
treadmill walking into the self-motion display as consistent simulated head movements; and 
(ii) used only a single treadmill speed (2 km h–1) that was not very representative of normal 
human walking speeds. During treadmill walking conditions in the current experiment the 
treadmill belt speed was adjusted to match the simulated speed of self-motion represented 
by the expanding radial flow display.

2.1  Method
2.1.1  Subjects. Twenty undergraduate psychology students (sixteen females and four males; 
mean age = 23.05 years, SD = 2 years) at the University of Wollongong received course credit 
for their participation in this experiment. All subjects had normal or corrected-to-normal 
visual acuity and no self-reported vestibular or neurological impairments. The Wollongong 
University Ethics Committee approved the study in advance and each subject provided 
written informed consent before participating in the study.

2.1.2  Displays and apparatus. A Mitsubishi Electric (Model XD400U) colour DLP data 
projector (1024 × 768 pixel resolution; refresh rate = 60 Hz) was used to rear project 
computer-generated displays (Dell Optiplex GX620 PC) onto a flat projection screen (1.48 m 
wide × 1.20 m high). Displays were programmed in Python using the Visual Python graphics 
library (Version 2.6) and consisted of 600 randomly positioned blue spheres/dots (3.2 cd m–2 ) 
on a black background (0.1 cd m–2 ). These displays simulated constant velocity forward self-
motion through a 3‑D environment that was 173 units wide by 130 units high and 300 units 
(~3 m) deep (object density was one dot per cube unit). As objects in this 3-D environment 
disappeared off the front edge of the screen, they were replaced at the same horizontal and 
vertical coordinates at the opposite end of space. We also used a motorised treadmill (ProForm 
PF 4.0) and Logitech head-tracking system during active treadmill walking conditions (see 
figure 1), both of which were modified to receive input from the same computer used to 
generate optic flow displays—this input was used to start, stop, and control the treadmill’s 
belt speed. The treadmill belt and the head tracker were also programmed using Python-based 
software.



Vection in depth during treadmill walking	 567

Displays were viewed by subjects while either walking on a moving treadmill or standing 
on a motionless treadmill. The treadmill placed subjects at a distance of approximately 0.9 m 
from the display screen, so that the display subtended an area approximately 79 deg wide 
by 67 deg high of visual angle. All visual displays simulated forward motion (an expanding 
optic flow pattern) at either 4 km h–1 or 5 km h–1. During active treadmill walking conditions 
the treadmill was programmed to match the simulated forward speed of the display for each 
trial (ie the display speed increased proportionally with the treadmill belt speed).

Subjects wore a worker’s helmet that was fitted with the 3‑D Logitech head-tracking 
system receiver (6 degrees of freedom sensing for x, y, z, pitch, roll, and yaw). The transmitter 
of this ultrasonic head-tracking system was mounted on the ceiling of the laboratory directly 
above the treadmill, and subjects were positioned under this transmitter at the beginning 
of each trial. Importantly, the head-tracking data were recorded in real time by the same 
computer used to generate the optic flow displays, and the software used to generate these 
displays had real-time access to the head-tracking data (~ 60 ms end-to-end system lag). 
This system was used to track subjects’ active head movements during treadmill walking, 
and then these head position and orientation changes were: (i) directly incorporated into the 
computer-generated self-motion displays during active conditions (as ecological simulated 
viewpoint jitter); (ii) played back as simulated viewpoint jitter to stationary subjects during 
passive viewing conditions; or (iii, iv) ignored by the computer generated self-motion display 
during other (‘nonjittering’) active or passive viewing conditions. In addition to their constant 
velocity forward self-motion component, active or passive ‘jittering’ displays also simulated 
head translations along the horizontal, vertical, and depth axes, and simulated roll, pitch, and 
yaw head rotations.

Figure 1. [In colour online, see http://dx.doi.org/10.1068/p7449] The set-up for experiments 1 and 2.
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For safety reasons subjects also wore a ceiling-mounted safety harness (B‑Safe) throughout 
the experiment for both active and stationary viewing conditions. At the beginning of each 
active self-motion trial subjects were asked to use the treadmill’s handrails until they felt 
comfortable with the simulated treadmill speed. Once subjects were comfortable with the 
speed of the treadmill, they let go of the handrails and used them only if they felt uncomfortable 
or disoriented. During stationary viewing conditions subjects stood on a stationary treadmill 
and viewed a playback of their previous active block of trials (jittering displays representing 
self-motion at either 4 km h–1 or 5 km h–1), or a smooth radially expanding optic flow display.

Subjects were asked to give a verbal rating of their perceived strength of vection in depth 
at the end of each self-motion trial on a graphical rating scale that ranged from 0 to 100. This 
rating was made relative to a standard reference stimulus that subjects were told represented 
a rating of 50.(1) The reference stimulus was a constant velocity expanding optic flow stimulus 
simulating self-motion at 4 km h–1 and was viewed on a motionless treadmill while subjects 
were stationary. A rating of 0 indicated no experience of vection (the visual display motion 
was attributed solely to object motion—ie stationary observer), and a rating of 100 indicated 
complete or saturated vection (visual display motion was attributed solely to self-motion—ie 
stationary surround).

2.1.3  Procedure and design. The experiment was a 2 × 2 × 2 within-subjects fully factorial 
design, and a repeated-measures ANOVA was used to analyse the data. We examined the 
following three independent variables: (i) treadmill and/or display speed (4 km h–1 or 5 km h–1); 
(ii) display type ( jittering or nonjittering displays); and (iii) subject activity (active treadmill 
walking or passive viewing while stationary). Both treadmill and/or display speed and display 
type were within-block variables, and subject activity was a between-blocks variable. The 
dependent variable was the perceived strength of vection in depth. In the practice phase 
subjects were given 1 or 2 training trials at both treadmill and/or display speeds (ie at 4 km h–1 
and 5 km h–1) until they were comfortable with walking at each simulated speed. During the 
testing phase the subjects were run through 3 experimental blocks of trials (these varied in 
terms of display speed and display type) consisting of 2 active blocks with a passive block 
run in between. Each experimental block consisted of 4 trials (ie purely radial optic flow at 
4 km h–1, purely radial optic flow at 5 km h–1, jittering optic flow at 4 km h–1, and jittering 
optic flow at 5 km h–1) that were randomly presented and lasted approximately 30 s. Subjects 
viewed displays in a darkened room; as subjects were positioned 0.9 m away from the display 
screen (ie the screen subtended an area approximately 79 deg wide by 67 deg high), the edges 
of the display would have been visible only within the subject’s periphery, almost 40 deg 
from the centre of their visual field.

2.2  Results
Vection was induced by all of the experimental conditions tested, with only the rated strength 
of this experience found to vary.

2.2.1  Main effects. We found a significant main effect of subject activity [F1, 19 = 18.66,  p < 0.001, 
p
2h  = 0.50 (see figure 2)], where passive playback conditions were shown to result in 

significantly stronger vection in depth ratings than active treadmill walking conditions. 

(1) This is the standard method for measuring vection, which is based on Stevens’s (1957) method 
of magnitude estimation. In his original method Stevens used a standard modulus stimulus (what 
we call the standard reference stimulus) on which subjective estimates were based. In the case of 
the current study the modulus was set at 50. No vection would, of course, be represented by a rating 
of “0”. Although defining end points is not ideal, and could compress estimates, this method is 
commonly used for measuring vection (see Kim and Palmisano 2008, 2010; Palmisano et al 2000, 
2003, 2008).
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We also found a significant main effect of display type (F1, 19 = 46.03, p < 0.001, p
2h  = 0.71) 

and of treadmill and/or display speed (F1, 19 = 67.16, p < 0.001, p
2h  = 0.78). Specifically, 

jittering displays and faster treadmill and/or display speeds (5 km h–1) were shown to produce 
significantly stronger vection in depth ratings than nonjittering displays and slower treadmill 
and/or display forward speeds (4 km h–1), respectively.

2.2.2  Interactions. There were no significant two-way or three-way interactions; however, 
we did find a trend toward an interaction between subject activity and display type [averaging 
across speed (F1, 19 = 3.27, p = 0.09, p

2h  = 0.15 (see figure 2)]. Specifically, as seen in figure 2, 
there was a trend toward there being a greater difference in vection strength ratings between 
active and stationary viewing conditions for jittering self-motion displays than nonjittering 
self-motion displays.

2.3  Discussion
Contrary to Seno et al’s (2011a) findings (but consistent with Onimaru et al 2010), we found 
that forward treadmill walking while viewing an expanding optic flow display reduced (rather 
than increased) vection in depth compared with viewing the same display while stationary. 
This reduction in vection in depth for active treadmill walking (compared with stationary 
viewing) was found irrespective of display type (jittering versus nonjittering displays) 
or  treadmill and/or display simulated forward speed (4 km h–1 versus 5 km h–1). Overall, 
subjects’ physical whole-body motion—which would provide vestibular, somatosensory, and 
proprioceptive information about self-motion—appeared to reduce vection compared with 
vision-only conditions.

Consistent with previous vection studies (see Palmisano et  al 2011 for a review), we 
found a robust advantage for jittering self-motion displays compared with nonjittering 
constant velocity self-motion displays—this was true irrespective of whether the subject was 
walking on the treadmill or was physically stationary when viewing these displays. However, 
vection in depth was generally reduced—for both jittering and nonjittering self-motion 
displays alike—during treadmill walking compared with viewing these same displays while 
stationary.

We also found an advantage for faster treadmill and/or display-based simulated forward 
speeds compared with slower treadmill and/or display-based forward speeds. Consistent 
with our predictions and the findings of previous vection studies (Apthorp and Palmisano 
2012; Brandt et al 1973; Palmisano 2002), faster forward display speeds increased vection in 
depth compared with slower forward display speeds. Our vection findings, however, showed 
no difference in reductions for vection during treadmill walking (compared with stationary 

Figure 2. Effect of jittering and nonjittering displays during active walking and passive viewing 
conditions for treadmill and/or display specified forward speeds of (a) 4 km h–1 and (b) 5 km h–1 on 
vection in depth strength ratings (0–100). Error bars depict ±1 standard error of the mean.
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viewing) between our two treadmill belt speeds. When matched to their respective display 
speeds, these two treadmill belt speeds resulted in comparable reductions in vection in depth 
strength ratings during treadmill walking (compared with stationary viewing).

Our findings could support a modified version of Barlow’s (1990) inhibition theory 
(where the inhibition is assumed to apply not only to visually perceived object/scene 
motion but also to visually perceived self-motion). Consistent with Barlow, visual 
information about self-motion might have been inhibited/suppressed during forward 
treadmill walking conditions because subjects were viewing an expanding optic flow 
display (simulating forward self-motion), which would have provided redundant 
multisensory information about forward self-motion. To further test this possibility, 
in experiment 2 we compared this specific redundant self-motion situation with the 
following nonredundant self-motion situation: viewing a contracting optic flow display 
during forward treadmill walking.

3	 Experiment 2: the effect of simulated display direction on vection in depth during 
forward treadmill walking
This experiment tested whether the observed vection reductions in experiment 1 for active 
treadmill walking (relative to stationary viewing conditions) were due to these displays 
specifying redundant multisensory information about self-motion. The conditions were identical 
to those in experiment 1, with one exception: we also examined contracting optic flow 
(simulating backward self-motion) while subjects walked forward on a treadmill (ie a situation 
that provides nonredundant multisensory self-motion information). If reductions in vection 
in depth during treadmill walking are due to displays specifying redundant multisensory 
information about self-motion, then viewing an expanding optic flow display while walking 
forward on the treadmill might result in greater reductions in vection in depth (compared 
with vection in depth while stationary) than viewing a contracting optic flow display under 
the same conditions.

3.1  Method
3.1.1  Subjects. Fourteen psychology students (nine females and five males; mean age = 23.17 
years, SD = 3.42 years) at the University of Wollongong received course credit for their 
participation in this experiment. These were different subjects who met the same selection 
criteria as experiment 1.

3.1.2  Design. The experiment was a 2 × 2 × 2 × 2 fully factorial design, and a repeated-
measures ANOVA was used to analyse our data. There were four independent variables 
tested, including: (i) display type ( jittering or nonjittering displays); (ii) subject activity 
(treadmill walking or passive viewing); (iii) treadmill and/or display speed (4 km h–1 
or 5 km h–1); and (iv) display direction (contracting optic flow or expanding optic flow). 
Display type and ‘treadmill and/or display’ speed both varied within blocks, and subject 
activity and display direction both varied between blocks. As in our earlier experiments, 
the dependent variable was the perceived strength of vection in depth (rated on a scale of 
0 to 100 compared with a reference stimulus—a constant velocity expanding optic flow 
display viewed while stationary—which was rated 50). It should be noted that during active 
conditions the simulated viewpoint jitter was always consistent with the subjects’ actual 
head motion (irrespective of whether the display was also simulating forwards or backwards 
constant velocity self-motion).

3.2  Results
Similar to experiment 1, vection was induced by all of the experimental conditions tested—
with only the rated strength of this experience being found to vary.
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3.2.1  Main effects. Similar to experiment 1, we found a significant main effect of subject 
activity on vection [F1, 13 = 33.13, p < 0.001, p

2h  = 0.72 (see figure 3)], where passively viewed 
self-motion displays resulted in significantly stronger vection in depth ratings than viewing 
displays during forward treadmill walking. Also consistent with experiment 1, we found a 
significant main effect of display type (F1, 13 = 100.58, p < 0.001, p

2h  = 0.89) and treadmill 
and/or display speed (F1, 13 = 49.52, p < 0.001, p

2h  = 0.79). Specifically, jittering self-motion 
displays and faster treadmill/display-based simulated forward speeds (5 km h–1) resulted 
in significantly stronger vection in depth ratings than nonjittering self-motion displays and 
slower treadmill/display-based simulated speeds (4 km h–1), respectively. We did not find a 
significant main effect for display direction (F1, 13 = 2.50, p = 0.14).

3.2.2  Interactions. We found a significant three-way interaction between subject activity, 
display direction, and display type [F1, 13 = 4.76, p = 0.05, p

2h  = 0.27 (see figure 3)]. To 
further examine this three-way interaction, we performed simple interaction effects (ie 2 × 2 
repeated-measures ANOVAs) for each level of display type (jittering self-motion displays 
versus constant velocity self-motion displays).

When we performed a two-way ANOVA for nonjittering displays, we found a significant 
main effect of subject activity (F1, 13 = 11.19, p = 0.01, p

2h  = 0.46), but no main effect of 
display direction (F1, 13 = 0.15, p = 0.71), and no interaction between the two (F1, 13 = 0.64, 
p = 0.44). These findings suggest that, irrespective of the simulated display direction, viewing 
nonjittering self-motion displays during treadmill walking resulted in reduced vection in 
depth compared with viewing these displays while stationary.

A two-way ANOVA for jittering displays showed a significant main effect of subject 
activity (F1, 13 = 35.87, p < 0.001, p

2h  = 0.73) and a significant main effect of display 
direction (F1, 13 = 5.13, p = 0.04, p

2h  = 0.28) as well as a significant interaction between the 
two (F1, 13 = 9.57, p = 0.01, p

2h  = 0.42). Simple effect contrasts for the interaction showed 
that there was: (i) no significant difference between expanding and contracting optic flow 

Figure 3. The effect of display type (jittering or nonjittering) and subject activity (active treadmill 
walking or passive viewing) for expanding optic flow displays simulated at (a) 4 km h–1 or (b) 5 km h–1 
or contracting optic flow displays simulated at (c) 4 km h–1 or (d) 5 km h–1 on vection in depth strength 
ratings (0–100). Error bars depict ±1 standard error of the mean.
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for stationary viewing conditions ( p > 0.05); and (ii) a significant difference between 
expanding and contracting optic flow for active treadmill walking conditions ( p < 0.05). 
Specifically, the examination of means showed that jittering expanding optic flow produced 
stronger vection in depth ratings than jittering contracting optic flow displays. Therefore, 
viewing a jittering expanding optic flow display produced stronger vection in depth 
than  viewing a jittering contracting optic flow display during forward treadmill walking 
(but not when viewing these same displays while stationary).

In addition to this three-way interaction, we found significant two-way interactions for: 
(i) display direction and display type (F1, 13 = 7.10, p = 0.02); (ii) subject activity and display 
type (F1, 13 = 6.04, p = 0.03); and (iii) subject activity and display direction (F1, 13 = 5.93, 
p = 0.03). Consistent with the results of the three-way interaction, Bonferroni-corrected 
a posteriori contrasts (controlling for the family-wise error rate at 0.05) showed: (i) contracting 
and expanding optic flow resulted in significantly stronger vection than expanding optic flow 
displays in jittering conditions (F1, 13 = 5.13, p = 0.04), but no significant difference between 
contracting and expanding optic flow for nonjittering optic flow displays conditions; (ii) passive 
viewing conditions resulted in significantly stronger vection than active viewing conditions 
for jittering self-motion displays (F1, 13 = 35.87, p < 0.001), and passive nonjittering displays 
also resulted in significantly stronger vection than active conditions for nonjittering 
displays (F1, 13 = 11.19, p = 0.01); and, lastly, (iii) contracting optic flow displays resulted 
in significantly stronger vection than expanding optic flow displays for active conditions 
(F1, 13 = 4.76, p = 0.05), but no difference was found between contracting and expanding 
optic flow displays for passive conditions (F1, 13 = 0.03, p = 0.87).

3.3  Discussion
As in experiment 1 vection was reduced when subjects viewed expanding optic flow displays 
while walking forward on the treadmill (compared with when they viewed the same 
displays when stationary). However, vection was also reduced in a very similar fashion when 
subjects viewed contracting optic flow displays while walking forward on the treadmill. Thus, 
vection reductions during treadmill walking were not restricted to conditions which provided 
redundant information about self-motion. Treadmill walking reduced vection irrespective 
of whether the biomechanical self-motion stimulation was consistent or not with the visual 
self-motion stimulation.

As noted in the methods, simulated viewpoint jitter was always consistent with the 
subject’s physical head movements in the active treadmill walking conditions, irrespective 
of the direction of self-motion simulated by the main (constant) velocity component of the 
optic flow. Adding this ecological simulated viewpoint jitter to inducing displays was found 
to enhance the vection induced in all of the different situations tested here (ie redundant 
treadmill walking, nonredundant treadmill walking, and viewing optic flow displays while 
stationary). Interestingly, this simulated viewpoint jitter was found to improve vection more 
when the biomechanical stimulation signaled the same direction of self-motion as the visual 
display.

4	 General discussion
In our experiments forward treadmill walking always reduced the vection in depth induced 
by both jittering and nonjittering self-motion displays (compared with viewing these displays 
while stationary). These vection reductions during forward treadmill walking were very 
similar irrespective of the visually simulated direction of self-motion (ie forward or backward). 
Despite global reductions in vection for treadmill walking: (i) faster treadmill belt speeds 
and/or simulated forward self-motions (5 km h–1) were always found to produce stronger 
vection in depth ratings than slower treadmill belt speeds and simulated forward self‑motions 
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(4 km h–1); and (ii) jittering displays were always shown to produce stronger vection in depth 
ratings compared with constant velocity displays—irrespective of whether the subject viewed 
the display while walking or standing still. Importantly, these findings appear to show that 
reductions in vection in depth during forward treadmill walking (compared with stationary 
viewing) resulted from the act of, or the stimulation produced by, treadmill walking itself, 
rather than from the visual consequences of treadmill walking (ie as a result of the simulated 
head movements generated during treadmill walking).

Our findings do not appear to support a modified version of Barlow’s (1990) inhibition 
theory for redundant or positively correlated sensory events during active self-motion. Here, 
we showed that forward treadmill walking reduced vection induced by both expanding 
(ie redundant information) and contracting (nonredundant or inconsistent information) optic 
flow displays (compared with viewing these same displays while stationary). Therefore, 
it appears that reductions in vection during forward treadmill walking (compared with 
stationary viewing conditions) are not exclusive to positively correlated and/or redundant 
multisensory situations. These vection reductions can also occur during negatively correlated 
and nonredundant multisensory situations.

The current findings of vection reductions during treadmill walking appear inconsistent 
with neurophysiological studies (Brandt et al 1998; Kleinschmidt et al 2002) and behavioural 
studies (Berthoz et al 1975; Wong and Frost 1981) reporting a reciprocal inhibitory interaction 
between the visual and nonvisual senses for self-motion. The reciprocal inhibition hypothesis 
proposes that, depending on the nature and type of stimulation, the most appropriate sense 
(typically vision) for a given situation may dominate the perception of self-motion and/or 
vection and downplay or attenuate information provided by the other subordinate sense(s). 
If vision was dominating this experience, then according to this hypothesis, conflicting 
nonvisual information should have had little to no effect on vection; but instead we found that 
conflicting biomechanical information about the direction of self-motion reduced vection 
during treadmill walking (compared with consistent biomechanical information about this 
experience). On the other hand, if nonvisual information was dominant, then we might have 
expected this situation to have inhibited (at least occasionally) the induction of vection 
during treadmill walking (as this experience relies on the domination of vision over the other 
senses). Contrary to this proposal, subjects experienced vection in all conditions, and it was 
only the strength of this experience that varied between conditions.

One reviewer suggested that our vection strength measure might have actually been 
indexing either perceived display speed (as in Durgin and Gigone 2007; Durgin et al 2005 
studies) or vection speed. While we are confident that subjects were rating vection (we 
carefully instructed them how to rate the strength of their vection in both experiments and 
thoroughly checked this understanding again on debriefing), vection speed and vection 
strength have been shown to be positively related (Apthorp and Palmisano 2012; Palmisano 
2002). Thus, we cannot rule out the possibility that vection speed (as opposed to strength) 
was a factor. It is even possible that simultaneous perceptions of object or scene motion and 
self-motion during treadmill walking (eg due to display lag) might have reduced the overall 
vection speed (eg assuming that the optic flow display was being perceptually parsed into 
components arising from separate self and object motions during these walking conditions).(2) 
While it might be possible to explain the current vection reductions during treadmill walking 
by invoking notions of display or vection speed subtraction (eg Durgin 2009), these current 
findings may reflect a completely different phenomenon to visually perceived reductions in 
display speed also observed during treadmill walking.
(2) Note that we have shown that it is still possible to induce very compelling vection in physically 
stationary observers, even when they are simultaneously perceiving dramatic illusory scene shearing—
see Palmisano et al (2006).
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Global reductions in vection during treadmill walking could be explained by attention. 
A study by Seno et  al (2011b) showed that increases in attentional load reduced vection, 
suggesting that the induction of vection might require attentional resources. It is possible that, 
during treadmill walking, subjects were devoting attentional resources to staying upright on 
the moving treadmill, which could have detracted from the visually induced illusion of self-
motion. Studies have also suggested the possible influence of top–down, cognitive effects 
on multisensory integration where selective attention to an individual sense might attenuate 
the integration (and, thus, possible benefit) of consistent multisensory information (Mozolic 
et al 2008; Welch and Warren 1980). Therefore, it is possible that not only were subjects 
devoting attentional resources to treadmill walking but also that this attention generated a 
bias toward biomechanical information about self-motion and attenuated the integration 
of visual information about this self-motion experience. However, in contrast, studies by 
Kitazati and Sato (2003) and Trutoiu et al (2008) have shown the opposite effect, such that 
vection is enhanced when subjects were not paying attention to the vection-inducing stimulus, 
and inhibited when they were. On the basis of the above findings, we might have expected 
treadmill walking to have improved (rather than reduced) vection compared with stationary 
viewing self-motion situations. Future research needs to reconcile these contradictory findings 
to determine whether attention might improve or reduce vection during treadmill walking.

Finally, it is important to contemplate reasons for the apparent discrepancies between 
our current findings and those of Onimaru et al (2010) and Seno et al (2011a). It is possible 
that the discrepancy between our findings and Onimaru et al’s (2010) findings were due to 
differences in the display or treadmill forward speeds between these two studies. Onimaru 
et al found a reduction in vection only when subjects were walking in the same direction 
as the simulated display motion (but not when subjects walked in the opposite direction to 
the simulated display motion). However, they used only a very slow treadmill belt speed 
(2 km h–1) that was below the range of normal human walking speeds. On the basis of the 
current findings, it is possible that global reductions for vection during forward treadmill 
walking occur only for common/typical human walking speeds. Furthermore, vection 
reductions during forward treadmill walking might be restricted to display speeds that are 
matched to the treadmill belt speed. Therefore, it is also possible that Seno et  al (2011a) 
found an enhancement for expanding optic flow during forward treadmill walking (compared 
with contracting optic flow and stationary viewing) because the simulated display speed 
(57.6 km h–1) was much faster than the physical treadmill belt speed (2 km h–1). Examination 
of the simulated/physical speed of the display and the treadmill belt and how well they 
are ‘matched’ are both potentially promising avenues for reconciling previous findings for 
vection during treadmill walking.

In conclusion, our findings show that forward treadmill walking results in a global 
reduction in vection in depth compared with stationary viewing conditions. Unlike previous 
findings for perceived visual object speed, these vection reductions during forward treadmill 
walking were not exclusive to positively correlated multisensory self-motion situations; 
negatively correlated self-motion situations (ie viewing contracting optic flow) also generated 
an overall reduction in vection. Interestingly, however, contracting optic flow further reduced 
vection in depth compared with expanding optic flow for jittering (but not nonjittering 
constant velocity) displays—suggesting that the inconsistent biomechanical information was 
more disruptive during jittering constant velocity conditions. Consistent with previous seated 
vection studies, despite overall vection reductions for forward treadmill walking, jittering 
self-motion displays and faster display/treadmill forward speeds always facilitated vection 
compared with nonjittering self-motion displays and slower display/treadmill forward speeds, 
respectively. Overall, our findings suggest that: (i) biomechanical information downplays 
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the overall visual experience of self-motion (and, thus, vection), particularly if it conflicts 
with visual information about the direction of self-motion during jittering displays; and 
(ii) consistent visual–vestibular information (provided by head-and-display motion) about 
self-motion always increases vection irrespective of the simulated direction of self-motion.
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